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ABSTRACT
Redy is a cloud service that provides high performance caches using
RDMA-accessible remote memory. An application can customize
the performance of each cache with a service level objective (SLO)
for latency and throughput. By using remote memory, it can lever-
age stranded memory and spot VM instances to reduce the cost of
its caches and improve data center resource utilization. Redy auto-
matically customizes the resource con�guration for the given SLO,
handles the dynamics of remote memory regions, and recovers from
failures. The experimental evaluation shows that Redy can deliver
its promised performance and robustness under remote memory
dynamics in the cloud. We augment a production key-value store,
FASTER, with a Redy cache. When the working set exceeds local
memory, using Redy is signi�cantly faster than spilling to SSDs.
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1 INTRODUCTION
1.1 The Case for Remote Memory as Cache
Stateful cloud services store their states on secondary storage, such
as server-local SSDs or a cloud storage service. Example storage
services are database systems, key-value stores, and JSON stores.
Stateful application services embed these data management sys-
tems, such as a directory service, document management system,
or source code control system. To o�er fast response time, these
types of services store a subset of their states in memory caches.

When allocating a memory cache, a server need not be limited
by its local available memory. It could use physical memory on
other servers. Although remote memory has higher access time
than the server’s local memory due to network latency, there are
many reasons why it can be an attractive choice.

First, a server’s physical memory capacity is limited. It may have
insu�cient local memory available for a stateful service, particu-
larly for its peak workloads. In this case, remote memory is the only
option. Otherwise, its state has to be spilled to secondary storage,
resulting in orders-of-magnitude performance degradation.

Second, some cloud services are satis�ed if they can read records
in a few microseconds (�s’s), which does not require local memory
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performance. This is currently impossible to achieve with SSDs,
but can be supported with fast data center networks [1].

Third, remote memory may be cheaper because it sits on lightly
loaded servers. For example, Google, Facebook, and Alibaba report
that as much as 50% of server memory in data centers is unuti-
lized [24, 47]. An extreme case is stranded memory, which is un-
usable by its local server because its cores have all been allocated
to local VMs. Stranded memory is essentially free. By using this
otherwise wasted memory as a cache, a stateful service can run on
smaller servers with less server-local cache, thereby reducing cost.

A fourth reason is the trend toward dedicated and disaggregated
memory servers whose sole function is to o�er memory to remote
servers [21, 24, 35, 37, 47, 61]. This approach is becoming more
feasible due to fast data center networks, whose point-to-point
bandwidth is close to I/O bus bandwidth and is usually underuti-
lized [45, 62]. Cloud service providers already disaggregate compute
and storage. By disaggregating memory, they can fully bene�t from
this expensive resource. Most cloud vendors have not been forth-
coming about their internal usage of this capability and do not yet
support it for third-party users. However, Google recently reported
that it uses disaggregated memory in its BigQuery service [37].

To be usable as a cache, remote memory must be accessible with
very low latency. Remote direct memory access (RDMA) is the
natural choice. RDMA is not as fast as local memory, but it is much
faster than SSDs and requires little or no CPU involvement.

Today, the typical access time for main memory is 70 nanosec-
onds (ns) [57]. For RDMA it is a few �s [2, 5, 63]. For SSD it is ⇠100
�s, but highly variable and often higher, due to garbage collection
and concurrent writes. Although RDMA latency is 100x better than
SSD, its bandwidth advantage is only 2x - 10x (e.g., SSDs are 16-24
Gbit/s and RDMA networks are 48-200 Gbit/s). Still, the di�erence is
signi�cant for applications that need high-throughput data access.
Hence, RDMA-accessible remote memory is a natural choice for a
cache sitting between these two layers of the memory hierarchy.

1.2 Contributions
There are two main challenges in using remote memory as a cache.
The �rst is how tune RDMA con�gurations. The choice of optimal
con�guration depends on the application workload, processor and
network characteristics, and service level objective (SLO). Miscon-
�guration can lead to poor performance. Tuning RDMA is known
to be di�cult. In a data center, it must be done dynamically, since
the choice of processor and network distance between processors
can vary. It is therefore important that this tuning be automated.

The second challenge is responding to changes in remote mem-
ory availability. A memory region might become unavailable be-
cause its server failed or because the memory region allocation was
evictable and the system reclaimed it for local VMs. In both cases,



the application that was using the cache must be dynamically re-
con�gured. It must operate without the cache or migrate the cache
to another remote memory region and re-populate it.

We propose Redy, a new cloud cache service that e�ciently
utilizes stranded and unused server memory using RDMA. Unlike
prior RDMA stores and caches, it handles failures and reclamations
and allows users to customize cache performance. It also requires
minimal changes to applications. Our contributions are as follows.

• Stranded memory analysis. We present the results of a study
that shows stranded memory is signi�cant and dynamic.

• An RDMA architecture for an SLO-based memory cache ser-
vice. Unlike previous RDMA systems that optimize for speci�c
performance targets, ours enables the user to customize the
target. It automatically �nds an RDMA con�guration that sat-
is�es the user-provided SLO and minimizes resource cost.

• Dynamic memory management. Redy is elastic. It adds or
removes cache regions when client requirements and memory
availability changes. It also e�ciently migrates cache regions
when a remote memory region becomes unavailable.

• Implementation and evaluation with a production key-value
store. We deploy Redy with FASTER [38] to improve its per-
formance when the hot set is larger than local memory. We
measure its improvement using the YCSB benchmark.

The paper is organized as follows. Section 2 shows that data
centers have a lot of unallocated memory that could be used as
remote caches and con�guring RDMA to use it is challenging. Sec-
tion 3 describes Redy’s architecture. Sections 4 and 5 explain how
Redy optimizes RDMA for a given workload and SLO. Section 6
discusses VM allocation and cache migration in response to mem-
ory changes. Our experimental evaluation of Redy is in Section 7.
Section 8 describes the integration of Redy with FASTER. Section 9
covers related work. Section 10 concludes with future work.

2 MOTIVATION
2.1 Underutilized Cloud Memory
We take it is as given that stateful applications would bene�t from
more memory. There is a lot of it in data centers, waiting to be
utilized. All major data center operators and cloud providers re-
port that memory is highly underutilized. Studies of traces from
Google [22, 54],Microsoft [17, 42], Alibaba [8, 25], and Facebook [24]
report memory utilization is under 50% and has strong temporal
volatility. We con�rm these results for unused memory, and extend
them by analyzing the dynamics of stranded memory.
Unallocated memory. We de�ne unallocated memory as the frac-
tion of DRAM not allocated to any VM or container. We measured
unallocated memory in 100 Azure Compute clusters over 75 days.
Compute clusters host mainstream internal and external VM work-
loads and represent the majority of servers compared to storage
or other specialized clusters. We selected clusters with at least 70%
of CPU cores in use. Each cluster trace contains time, duration,
resource demands, and server-ids for millions of VMs. We �nd
strong diurnal patterns; the typical peak-to-trough ratio is 2. At the
median (across clusters and time), 46% of memory is unallocated.
The tenth and �rst percentile are 37% and 28%, respectively.

0.00

0.25

0.50

0.75

1.00

1GB 10GB 100GB 1TB 10TB 100TB 1PB
Reachable Stranded Memory

C
um

ul
at

iv
e 

D
is

tri
bu

tio
n 1 switch (2us)

3 switches (8us)

5 switches (50us)

Figure 1: The signi�cance of stranded memory.
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Figure 2: The dynamics of stranding events.

Stranded memory. A subset of unallocated memory is stranded.
At the median, 8% of memory is stranded. This grows as more VMs
and containers are allocated with more than 16% stranded at the
90-th percentile and 23% stranded at the 99-th percentile.

We analyze the amount of strandedmemory reachable via RDMA
bymeasuring the number of network switches between a server and
stranded memory, shown in Figure 1 as a CDF. Half of all servers
can reach 1 TB of memory by traversing just one switch, 30 TB by
traversing three switches, and 100 TB by traversing �ve switches.
A small fraction of servers can even reach 1 PB. Our analysis shows
that stranded memory in a public cloud is too signi�cant to ignore.
Stranding Duration. Figure 2 shows the distribution of the dura-
tion of stranded memory events. A stranding event begins when
a server allocates all CPU cores while �1 GB of memory remains
unallocated. It ends when a VM or container on the server termi-
nates, making at least one core available. We �nd that memory
is frequently stranded and unstranded with variable durations of
minutes to hours. The median stranding event is 13 minutes, with
a 25-th percentile of 6 minutes and a 75-th percentile of 22 minutes.
Our analysis shows that the amount and duration of stranded mem-
ory are highly dynamic, making it challenging to use it e�ectively.

2.2 Diverse RDMA Con�gurations
We propose using this unallocated memory for RDMA-accessible
remote caches. However, optimizing RDMA’s performance is hard.
Parallelization, asynchrony, thread contention, batching, one-sided
vs. two-sided operations, and CPU bottlenecks all a�ect RDMA
throughput and latency. Performance is also highly sensitive to
the underlying hardware. Overall, it is di�cult to develop a robust
solution for a variety of workloads and con�gurations.

For example, Figure 3 shows the latency and throughput of
our caching system, Redy, when writing 8-byte payloads (as in
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Figure 3: The impact of the RDMA con�guration in Redy.

YCSB [16]) to remote memory with three di�erent RDMA con-
�gurations. The latency-optimal con�guration has 4.1`s latency,
which includes 2.9 `s network latency, but the throughput is only
1.2 million operations per second (MOPS). The throughput-optimal
con�guration achieves 205MOPS, but the latency is 538 `s. The bal-
anced con�guration is in between with 14 `s latency and 77MOPS.
We have similar �ndings for reads and other record sizes.

Many con�guration parameters a�ect throughput, latency, and
cost. They often improve one performance metric and degrade
another. For example, increasing the number of operations in each
RDMA transfer (called the batch size) increases throughput but also
increases latency per operation. Increasing the number of in-�ight
transfers improves utilization of an RDMA connection and hence
its throughput, but it increases latency. Increasing the number
of hardware threads that service RDMA requests on the client
and server increases throughput, but also increases cost. These
con�icting trade-o�s imply the need for optimization.

To solve this optimization problem, we need a software architec-
ture that can dynamically tune these parameters, and an optimiza-
tion algorithm that �nds the optimal point in the parameter space.
To address these challenges, we propose that the user guides the
choice of con�guration by specifying an SLO consisting of the de-
sired throughput and latency of the remote cache. It is the system’s
job to choose the lowest-cost RDMA con�guration that satis�es the
SLO and then deploy it. Relating cache performance to application
performance is out of scope and a possible topic of future work.

3 REDY ARCHITECTURE
3.1 Design Principles
Redy is a cache service that o�ers underutilized cloud resources to
memory-intensive applications. Its design goals are:

(1) Generality and ease of use. Redy must have a �exible inter-
face that can be easily integrated with a variety of memory-
intensive cloud applications.

(2) Customizable performance. Cloud applications have diverse
throughput and latency requirements. Users can customize
Redy’s performance by providing SLOs for I/O throughput
and latency and trade performance for lower cost.

(3) High resource utilization and minimal disruption. Redy can
exploit underutilized resources and strandedmemory, thereby
improving cloud resource utilization. This utilization im-
provement should not disrupt existing applications.

(4) Robustness to dynamics. Resource utilization changes over
time. One server may become busy while another becomes
underutilized. Redy handles such dynamics, o�ering robust
service as long as resources are accessible somewhere.

3.2 Back End
Figure 4 shows the architecture of Redy. The front end is imple-
mented by the Redy client, which is colocated with its application.
It talks to its cluster’s back end, which consists of a global cache
manager and a set of cache servers that run as VMs. We describe
the back end in this subsection and the front end in the next one.

Redy’s cache manager interacts with the cluster’s VM allocator.
It tracks the available server resources, which it uses to provision
VMs. The cache manager o�ers three operations for allocating a
cache: Allocate, to allocate one or more VMs for a cache; Reallocate,
to revise a cache allocation; and Deallocate, to drop a cache.

TheAllocate operation takes three parameters: the desired amount
of memory, an SLO that speci�es the desired latency and throughput
of reads and writes, and a duration that speci�es the likely lifetime
of the cache. The SLO supports the second design goal by enabling
the application to customize the cache’s performance, for exam-
ple, by specifying low latency for an interactive application that
requires fast response time or high throughput for an analytics ap-
plication that does data ingestion and query processing. A duration
of in�nity says that the caller is willing to pay full price for a cache
that remains active until it is explicitly deallocated or fails. Shorter
durations are meant to bene�t from spot pricing of excess resources
that the cloud vendor is unable to sell at full price [9, 23, 43], thereby
improving resource utilization, the third design goal.

To process an Allocate request, the cache manager allocates one
or more VMs, each of which consists of memory and zero or more
cores, and derives an RDMA con�guration that will support the
requested SLO. It then returns a list of the allocated VMs and the
RDMA con�guration to use to communicate with them.

If the cache manager cannot satisfy the requested combination
of capacity, SLO, and duration, then the Allocate request fails. The
request has no e�ect and the cache manager returns an exception
to the client. If a VM is a spot instance, then the VM allocator is free
to reclaim the VM’s resources, e.g., to sell the resources for a higher
price. In this case, the VM allocator alerts the cache manager of the
change and gives it time to compensate for the loss of resources.
Today’s cloud providers give an early warning of 30-120 seconds.

When the cache manager is noti�ed that a VM failed or was
reclaimed, it alerts the Redy client, which must be able to cope
with the loss. Ideally, it can provision and populate a replacement
VM. This recon�guration activity is a key challenge for Redy. Its
solution addresses the fourth design goal. Details are in Section 6.

The Reallocate operation is used to recon�gure an existing cache.
The data in the cache can be truncated or remain unchanged depend-
ing on the parameters in the reallocation. The Deallocate operation
is called to release all VM resources for a cache.

Each VM that hosts a cache runs a cache server, which is an
agent that processes Connect, Read, and Write operations. These
operations depend on RDMA details and are described in Section 4.

3.3 Front End
A cache client provides a virtual storage device abstraction that
supports a contiguous byte-addressable address space. The client
maps that address space to memory regions of the cache’s VMs.
The size of a memory region is con�gurable (1 GB by default). The
application can perform a read or write operation on the device
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Table 1: APIs provided by the cache client for applications.
The underlined functions are for performing I/Os.
API Function

Create(capacity, SLO, dura-
tion [, �le])

Create a cache with the speci�ed capac-
ity, performance SLO, and duration. Op-
tionally populate the cache with a pre�x
of the �le length ’capacity’, and return
the ID of the created cache.

Read(ID, dst, addr, size, cb) Read (async) from a cache with speci�ed
address, size, and the callback.

Write(ID, src, addr, size, cb) Write (async) to a cache with speci�ed
address, size, and the callback.

Reshape(ID, capacity, SLO) Change the con�guration of a cache
with new capacity and SLO.

Delete(ID) Delete a cache with speci�ed ID.

at an arbitrary address and of arbitrary size (bounded by cache
capacity). The client translates the operation into a read or write at
the corresponding o�set of a memory region. This general device
abstraction supports the �rst design goal.

Table 1 lists the client’s APIs to create, manage, and access a
cache. The Create function creates a cache of a given size, perfor-
mance level SLO, and duration, and optionally initializes its content
based on a �le. The SLO speci�es a maximum average latency and
minimum average throughput of reads and of writes. If Create can
allocate the requested capacity and the cache can satisfy the SLO
and duration, then the client receives a list of VMs and the RDMA
con�guration for the cache and populates it (if the �le parameter is
present); otherwise, it has no e�ect and returns an exception.

On receiving the list of VMs, the client constructs a region table
that maps the cache’s address space [0, capacity) to memory regions
on servers. It divides the address space into virtual regions, mapping
each one to a physical region on a VM (see Figure 5). To service a
Read or Write for cache address x, the client uses the region table
to translate x into the address on the VM where x is stored.

The two data access operations, Read andWrite, are asynchro-
nous, which is important for performance as we explain in Section 4.
When an I/O operation �nishes, its associated callback is invoked.

The Reshape function enables an application to change the SLO
or capacity of a given cache. There are two cases: the SLO changes
or it is unchanged. In the �rst case, the client calls Allocate to �nd
new VMs of the requested size that satisfy the SLO. If it succeeds,

Cache Address Space

byte 0 byte capacity - 1

Region 0 Region 1 Region 0 Region 0

VM 1VM 0 VM 2
Figure 5: A region table maps a cache to VMs.

the client migrates the old cache to the new one, truncating the end
of the cache if it shrank. Then it deallocates the old cache.

In the second case, the client resizes the cache. If the cache
shrank, the client truncates it. If that frees up regions, the client
calls Reallocate to notify the cache manager. If the cache grew, the
client extends the address space. If the last region has insu�cient
unused space, then the client calls Reallocate to request more VMs.

If the client succeeds in reshaping the cache, it updates the region
table. If it cannot allocate enough memory or cannot satisfy the
SLO, then it returns an exception and the cache remains unchanged.

The Delete function removes a cache by sending Deallocate to
the manager. Any later access to the cache will return an exception.

4 REMOTE CACHEWITH RDMA
This section explains how Redy con�gures RDMA to access remote
memory regions. The next section describes tuning for a given SLO.

4.1 RDMA Background
RDMA enables an application on a VM to send requests to its NIC to
read or write memory on another VM. It uses kernel bypass, which
means the application interacts directly with its VM’s NIC. The
transfers are handled entirely by the NICs, with no OS involvement.

An application talks to its NIC via one or more queue pairs (QPs),
each of which consists of two workqueues: a send queue and a
receive queue for submitting and receiving requests respectively.
Each workqueue has an associated completion queue. Multiple
workqueues may share the same completion queue.

Communication can be one-sided or two-sided. With one-sided
RDMA, the client application directly accesses the server’s memory
via read and write operations. A read operation includes the address
and length of the server data to be read and the client location where
the data should land. Conversely, a write operation includes the
address and length of the client data and the server location where
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the data should land. The client application polls the completion
queue for an event that indicates the operation �nished.

Two-sided RDMA o�ers send and receive RPC-like operations in
which the server CPU processes the client’s request. Redy imple-
ments two-sided communications, but like previous work [19, 27,
55, 63] does it using one-sided RDMA writes, since they are faster.

One-sided RDMA uses session-oriented communication. A QP
can only communicate with the QP that it connects to. Messages
are delivered in order with no loss or duplicates.

4.2 Cache Implementation
Connection Setup. To process Create and Reshape operations or
replace a failed/reclaimed VM, the client asks the cache manager to
allocate new VMs. The allocate operation returns a list of VMs and
the RDMA con�guration to the client. After the client updates the
region table, it builds RDMA connections by sending a Connect mes-
sage to the cache server on each newly allocated VM. The message
includes the number of physical regions the cache uses on the VM
and the RDMA con�guration. The latter speci�es how the client
and server communicate: whether communications is one-sided
or two-sided, and if two-sided, then how many server CPU cores
the cache can use to process RDMA requests. The server allocates
the requested number of memory regions, registers them to the
NIC, and replies with RDMA access-tokens, one per region, that
the client uses to access server memory. When the client receives
replies for all Connect messages, the cache is ready to use.
Reads andWrites. Redy implements reads andwrites on a cache as
remote memory accesses (see Figure 6). The Read andWriteAPIs are
asynchronous, so an application can issue requests without waiting
for previous ones to �nish. The Redy client is multithreaded. Each
thread collects read and write requests from an application thread
in a request batch data structure, which it sends to the server using
RDMA. The batch size is con�gurable from one to hundreds.

Each server thread polls messages from one or more RDMA con-
nections. Upon receiving a request batch, it executes the requests
on local memory regions. For a write request, the server thread
copies the request’s payload to the destination address. For a read
request, it copies the requested data from the requested memory
address to the response bu�er. Finally, it sends a response batch that
contains the results of all requests to the client through the same
RDMA connection on which it received the request batch.

Each client thread polls its RDMA connection to retrieve re-
sponse batches. For each read response in a batch, the client thread

copies the payload to the application bu�er speci�ed by the corre-
sponding read request. The client invokes the callback function of
each read and write request to complete it.

Redy guarantees that all asynchronous requests are executed
in order: requests from an application thread are batched in pro-
gram order, batches are delivered in order with reliable RDMA
connections, and they are processed in order by server threads.

4.3 Static Optimizations
Redy’s RDMA architecture is optimized to exploit RDMA character-
istics. Figures 7 and 8 show the e�ectiveness of each optimization.
Unless otherwise mentioned, latency is the time in `s to process one
I/O, which is a Redy read or write call, and throughput is the rate
in MOPS. Figure 7 shows the median network round trip latency
(light blue), and the median (dark blue) and 99-percentile tail (line
with a top) of overall latency. This test uses one application thread,
one client thread, and one server thread to read and write 8-byte
records in a 1GB cache with a batch size of one. (Section 7 describes
the setup and presents more results.) The details are as follows.
Lock-free Communications. To minimize the overhead of ex-
changing data between threads, we use lock-free ring bu�ers. Specif-
ically, a client thread accepts I/O requests from an application thread
using a batch ring bu�er, each element of which is a request batch.
When a batch becomes full and the RDMA connection is avail-
able for another RDMA operation, the client thread moves the
batch to its message ring bu�er, which is registered to the NIC as
RDMA bu�ers. There is a message ring on the server for every
connection. Batch and message rings are based on previous work
on lock-free ring bu�ers using atomic compare-and-swap and fetch-
and-add [30] and using ring bu�ers for RDMA data transfer [19],
but are customized for the Redy architecture. These ring bu�ers
allow many requests to be passed and processed e�ciently from the
client to the server. This optimization eliminates data contention
compared to a baseline where application threads use locks to share
data with client threads, thereby reducing tail latency by 7⇥ and
improving throughput by 68.7%, as shown in Figures 7 and 8.
One-sided Operations. If a request batch has only one read (or
write) request, we translate it to a one-sided read (or write). Other-
wise, we use a write to send the request batch to the message ring
on the server. This optimization reduces median latency from 19 `s
to 12 `s and increases throughput by 45.3%.
Fully-loaded Queue Pairs. The number of in-�ight RDMA opera-
tions on a connection is called its queue depth, which we control by
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the message ring size. Increasing it reduces waiting time of requests
in the batch ring and thus their latency. It also increases network
utilization. Compared to one in-�ight operation, a queue depth
of four reduces latency to 7.1 `s and increases throughput from
0.22MOPS to 0.74MOPS, a 3.4⇥ speedup. However, the network
latency increases with queue depth due to higher tra�c, e.g., com-
paring the light-blue bars for one-sided RDMA and fully-loaded
QPs in Figure 7. Although throughput improves when we increase
queue depth from four to eight, latency worsens. We measure the
performance impact of queue depth, starting from one, and choose
the maximum value that improves both latency and throughput.
NUMA-aware A�nitized Threads. OS thread scheduling can
negatively a�ect application performance [32, 51]. To avoid this,
we pin Redy threads to physical cores in a NUMA-aware fashion.
Each client thread is a�nitized to an application thread’s NUMA
node, which reduces communication overhead between threads
and stabilizes communication between client threads and the NIC.
This achieves a latency of 5 `s and throughput of 1.1MOPS, a 30%
and 52% improvement respectively over non-a�nitized threads.

5 SLO-DRIVEN CONFIGURATION
5.1 Performance Variables
RDMA can transfer messages in just a few microseconds. At that
time scale, small changes in the instruction count, synchroniza-
tion delay, memory contention, or processor cache contention can
greatly a�ect RDMA latency and throughput. These e�ects can
be controlled by the choice of RDMA con�guration and how it is
used. However, since optimal choices depend on the size of cached
records and the relative importance of latency and throughput, the
choice is necessarily workload dependent.

Based on microbenchmarks and the rich literature on RDMA
performance, we have identi�ed four variables that are the primary
determinants of Redy cache performance. They are summarized in
Table 2. Increasing the value of each variable will increase through-
put. But it also increases network tra�c, which in turn increases
the latency of individual requests. Details are as follows.
• Client core count (2) - Increasing client threads adds more com-

putation and RDMA connections for more parallelism. This
parameter is capped by available CPU cores in the client VM.

Table 2: Variables balancing latency and throughput.

Variable Description Lower
Bound

Upper
Bound

2
the number client threads that pro-
cess request batches 1 client cores

B the number of cache server threads 0 2
1 the number requests in a batch 1

⌃ 4 KB
record size

⌥
@ the number of in-�ight operations opt. NIC spec

• Server core count (B) - Increasing threads on the remote server
to process batched requests reduces the load on each thread.
No server threads are needed if requests are not batched. Each
client thread has one RDMA connection, and the server has at
most one thread per connection (since the bottleneck is the
network, not server compute), so we cap B at 2 , i.e., B  2 .

• Batch size (1) - Batching small requests improves network band-
width utilization. In our RDMA tests, bandwidth utilization
and throughput stop improving beyond 4KB data transfers.
Therefore, we cap the batch size at

⌃ 4 KB
record size

⌥
messages.

• Queue depth (@) - Based on the fully-loaded QP optimization,
additional in-�ight operations improve bandwidth utilization,
i.e., increasing throughput but also latency, similarly to 1. The
upper bound is speci�ed by the NIC, which is 16 in our testbed
on Azure HPC clusters [41].

In addition to the trade-o� between latency and throughput,
there is a trade-o� between performance and cost: increasing 2 and
B increases the client and server VM cost.

5.2 SLO-based Search
A major challenge of Redy’s design is to �nd an RDMA con�gu-
ration that satis�es each cache’s SLO. Our solution is a two-phase
search algorithm: (1) o�ine modeling and (2) online searching. In
o�ine modeling, we perform measurements to build a function that
captures the e�ect of the con�guration parameters (2 , B , 1, @) on
latency and throughput. In online searching, we use the function
to search for values of these variables that satisfy the latency and
throughput speci�ed by the SLO. Our detailed design is below.
Con�guration Space. An RDMA con�guration is a tuple [2 , B 1, @]
of con�guration parameters. Our performance model is a function
5 that maps each RDMA con�guration to latency and throughput:

5 : (2, B,1,@) ! (latency, throughput)
Given the highest number of client cores⇠ , the largest batch size ⌫
de�ned by the record size, and the NIC-speci�c queue depth & , the
total number of con�gurations can be calculated as

(
⇠’
2=1

(2 + 1)) ⇥ ⌫ ⇥ (& � >?C .) �⇠ ⇥ (⌫ � 1) ⇥ (& � >?C .)

where we consider several con�guration constraints: (1) the server
core count is from zero and to the client core count; (2) if there are
no server threads, then batching is disabled so the batch size is one;
(3) the minimum queue depth is optimized by the fully-loaded QP
technique. Overall the con�guration space is $ (⇠2 ⇥ ⌫ ⇥&).

In both modeling and searching, we explore the con�guration
space by incrementally increasing the value of every parameter in
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Figure 9: Con�guration performance modeling.

a resource-e�cient fashion to minimize cost: explore the con�g-
urations that do not increase the hardware cost, i.e., increasing 1
and @, before the con�gurations that do, i.e., 2 and B . We increase 2
before B to minimize use of limited compute resources on remote
memory servers, e.g., in a memory-disaggregated environment.

Formally, we de�ne a Redy con�guration space as a �ve-level
tree. The root represents con�guration options for B , the second
level for 2 , the third for 1, the fourth for @, and the leaves for latency
and throughput. An internal node and the edges below it represents
a parameter and its values in increasing order from left to right. A
root-to-leaf path represents a con�guration. A leaf is the latency
and throughput of the path’s con�guration.

The construction of the tree enforces the aforementioned con-
straints. For example, all 1 nodes have only one child (1 = 1) in the
sub-tree of B = 0, and the 2 node under B = ( 0 has⇠ �( 0+1 children
(from ( 0 to ⇠). To explore the space, we do a pre-order traversal
to visit con�gurations that require fewer server and client threads,
and thus reduce overall hardware cost.
O�line Modeling. We use o�ine measurements to build a perfor-
mance model (the function 5 ). The model is sensitive to network
latency, which varies depending the network distance between the
cache client and cache server (cf. Figure 1). We build a performance
model for each distance in a data-center-scale deployment. A typi-
cal data center network has three distances: one switch (intra-rack),
three switches (intra-cluster), and �ve switches (inter-cluster).

The built-in measurement application on the client VM (the
largest VM type for the deployment) allocates a server VM with
enough cores (also for the largest con�guration of interest). It then
creates a Redy cache with an arbitrary con�guration. The client
starts the modeling by telling the manager the number of available
cores for the cache, the record size, and the NIC-speci�c queue
depth. The manager builds the tree representing the con�guration
space, with empty leaves. The manager and the client then repeat-
edly generate the next con�guration to measure (∂) (see Figure 9),
switch to that con�guration, measure its latency and throughput
by performing I/O operations on the cache, and report the result to
the manager (∑). When the manager determines that the model is
complete (∏), it signals the application to terminate.
The Challenge and Solution. The performance modeling is done
o�ine, when Redy is deployed in a new cloud RDMA environment.
Still, the size of the con�guration space poses a challenge. In our
testbed, a VM has up to 60 cores, of which we assume half are
available to a Redy cache, and the NIC-speci�c queue depth is 16.
The model for 8-byte records has ⇠3M con�gurations per network
distance. If one measurement takes a minute, including switching
to the new con�guration, performing I/Os, and reporting the result,

then building the model takes over �ve years to �nish! So we cannot
measure every con�guration.

Our solution applies interpolation and early termination. With
interpolation, we only measure con�gurations where parameter
values are powers of 2, and we assume a linear growth of latency
and throughput between adjacent measured con�gurations. For
example, 5 (1, 1, 1, 3) is estimated as the mean of 5 (1, 1, 1, 2) and
5 (1, 1, 1, 4). This e�ectively reduces the number of measurements
to $ ((log⇠)2 ⇥ log⌫ ⇥ log&), which is less than two thousand
con�gurations in the above example.

Early termination removes unnecessary measurements. Ideally,
increasing the value of each variable increases the throughput.
However, due to factors such as thread and connection contention,
increasing a parameter might not improve throughput while in-
creasing latency. When this happens, we stop measuring con�gu-
rations where only the value of that particular parameter increases.
For instance, if the throughput does not improve from 5 (4, 2, 2, 2)
to 5 (8, 2, 2, 2), there is no point in measuring 5 (16, 2, 2, 2).

These two optimizations reduce the number of measurements
for the above example to 1000, which took only 15 hours. Section 7
shows the accuracy of the estimated performance by interpolation.
The resulting model will remain accurate if the hardware is stable,
i.e., the NICs and switches. When hardware changes, the model
should be updated by repeating the modeling, but we speculate that
such hardware changes are infrequent, once every few years.
Online Searching. When the cache manager receives an Allo-
cate request, it searches for a con�guration to satisfy the given
SLO. It uses the algorithm sketched in Figure 10, which traverses
the con�guration tree in pre-order with pruning to speed up the
process.

Line 1 �nds the model for the record size speci�ed in the SLO.
Line 2 allocates an empty con�guration, which is used as the cur-
rent con�guration during the search. Line 3 invokes the traversal
function, starting with the root of the model, B . If the traversal
succeeds, then the algorithm returns config, which is guaranteed
to have the fewest server threads among all possible con�gurations
and thus incurs minimal cost; otherwise, it returns null (Lines 4-6).

If the current visited node is a leaf (Line 8) and the current con�g-
uration violates the latency SLO, then the traversal function returns
an “invalid” status (Lines 9-10). If latency and throughput are satis-
�ed, then the search returns “success” (Lines 11-12). Otherwise, the
traversal explores internal nodes (Line 13). Line 14 identi�es the pa-
rameter for the current level, and Line 15 initializes the search result
as “invalid”. Then Lines 16-25 visit the children of the current node
left-to-right. For each child, it updates the current con�guration
parameter with the edge value and then recursively traverses the
subtree rooted at the child (Lines 17-18). If the traversal succeeds,
the search stops (Lines 19-20). If it returns “invalid”, we can safely
prune all the remaining children; since increasing the parameter
value can only increase the latency, the latency SLO is violated
for all of them (Lines 21-22). Finally, if the current child returns
“continue”, then the next child is visited (Lines 23-24).

In a test to search 100 random SLOs in a space of three million
con�gurations, pruning reduces the number of explored leaf nodes
by 25%. The average search time was only 0.027 seconds. Section 7
shows the quality of the returned con�gurations.



1 model �nd the model for the record size
2 con�g empty con�guration
3 result Traverse(model.root, SLO, con�g, 1)
4 if result = SUCCESS then
5 return con�g
6 return null

7 Function Traverse(node, SLO, con�g, level):
8 if level = 5 then
9 if node.latency > SLO.latency then

10 return INVALID
11 if node.throughput � SLO.throughput then
12 return SUCCESS
13 return CONTINUE
14 p the parameter at this level
15 node_result INVALID
16 foreach child in node’s children from left to right do
17 con�g.p edge value to child
18 child_result Traverse(child, SLO, con�g, level+1)
19 if child_result = SUCCESS then
20 return SUCCESS
21 if child_result = INVALID then

//pruning remaining children
22 return node_result
23 if child_result = CONTINUE then
24 node_result CONTINUE
25 end
26 return node_result

Figure 10: Online SLO-based searching in the manager.

6 REMOTE MEMORY MANAGEMENT
6.1 Resource Allocation
Recall from Section 3 that an application invokes Create to provision
a cache of a given capacity, SLO, and duration. The cache client
services the function by issuing an Allocate to the cache manager.

First, the cache manager translates the capacity and SLO into
an RDMA con�guration for each network distance, as described in
Section 5.2. Then it allocates a VM whose memory and CPU cores
are su�cient for the RDMA con�guration. Since there are di�erent
RDMA con�gurations for di�erent distances, the cache manager
has to �nd the best VM for the con�guration associated with each
network distance and then choose the least expensive one.

The cache manager must choose VMs from the menu of VM sizes
o�ered by the cloud provider. Each VM size has �xed cores and
memory. Today, providers o�er relatively few VM sizes with a high
ratio of memory to cores and no VMs consisting of stranded mem-
ory. A wider range of choices would enable the manager to choose
VMs that more closely match the desired RDMA con�guration.

Since the set of VM types changes infrequently, the cache man-
ager can maintain a static list of VM types, with each one’s memory
size and core count, and its price in each cloud region. To service
an allocation request, it identi�es the VM types in the client’s data
center with enough memory and cores and chooses one that has
lowest cost and is available within the required network distance.

Beyond these static allocation strategies, there are many ways
the cache manager can optimize the choice of VMs. They depend on
the optimality criteria it uses and on the VM allocation mechanism
of the cluster computing platform it runs on. In some cases, it may
be cheaper for the cache manager to select two or more VMs that
together satisfy the con�guration. Each VM’s core-to-memory ratio
must be at least that of the con�guration, to satisfy the SLO.

Additional cost savings are possible with a spot VM. This is an
attractive choice if the cache can be migrated within the 30-120
seconds notice before its VM is reclaimed. This constraint argues
for the use of many small VMs instead of a large one, to leave time
to migrate each VM cache. We describe migration shortly.

Recent research has shown how to predict the lifetime of spot
VMs [10]. This would enable the allocation of VMs that satisfy the
requested duration. It could also suggest preemptively migrating a
VM’s cache, knowing it will likely be reclaimed soon.

At any given time, di�erent VM types might have spot instances
available. The cache manager can exploit such cost-saving opportu-
nities by periodically issuing an allocation request for a cheap VM
and migrating the cache to it when it becomes available.

The ability of the cache manager to optimize the choice of VMs
could be improved by enriching the VMallocator’s API. For example,
to avoid having the cache manager poll for cheap VMs, the VM
allocator could o�er an option to alert the cache manager when
spot VMs of a certain type become available. It could also o�er an
option to request the cheaper of one large VM or several smaller
VMs based on current spot pricing. VM allocation for spot instances
is an active research area. We discuss some recent work in Section 9.

6.2 Dynamic Memory Management
If the VM hosting a cache fails or is reclaimed, then the cache client
is noti�ed andmust allocate another cache to replace it. For a failure,
the cache client can use a copy of the cache to populate the new
cache. For a reclamation, the cache client can migrate the cache’s
content to a new cache. The a�ected parts of cache are unavailable
during recovery and possibly during migration. Afterwards, the
entire cache is available and must satisfy its performance SLO.

The migration period depends in part on the time to provision
a new VM. This might exceed the minimum time delay before the
spot VM is reclaimed. If this risk is unacceptable or if a VM failure
is too disruptive, the cache manager could hold pre-provisioned
VMs as targets for migration. Another alternative is replicating the
cache. Replica synchronization techniques can be found in [29, 52].

The migration speed also depends on the transfer rate. A tuned
RDMA transfer in Redy can fully utilize the network bandwidth.
Migrating a Cache. To migrate the content of an existing cache
to a newly allocated VM, the cache client needs to tell the new VM
to establish a bandwidth-optimized connection with the existing
cache. The new VM uses one-sided reads to copy data from the
old VM. During the migration, operations on the migrated regions
should be paused until the migration is �nished. To minimize this
performance impact, we employ two optimizations for reads and
writes respectively: unpaused reads and pause-on-migration writes.
In unpaused reads, we use the old VM to service read operations,
and immediately switch to the new VM when the migration is over.
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(a) Read latency with record sizes from 4B to 16KB.
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(b) Write latency with record sizes from 4B to 16KB.
Figure 11: The latency of Redy caches with latency-optimal con�gurations for di�erent record sizes.
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(a) Read throughput with record sizes from 4B to 16KB.
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(b) Write throughput with record sizes from 4B to 16KB.
Figure 12: The throughput of Redy caches with throughput-optimal and stranded-memory con�gurations.

Unlike reads, writes have to be paused during the migration. But
instead of pausing all writes to the cache, in pause-on-migration
writes, we migrate regions one by one and pause writes only to
the region being migrated. After a region has been migrated, the
cache client updates its region table using the new VM and resumes
paused writes. When all regions are migrated, the client signals the
old VM to terminate. Section 7 evaluates the impact of migration on
read and write performance, with and without the optimizations.
Resizing a Cache. In response to a Reshape invocation, the cache
client executes operations to grow or shrink the size of the cache. To
grow a cache, the client �rst uses any memory headroom available
in the cache’s last VM. For additional growth, the client allocates
another VM, using the same memory-to-core ratio, batch size, and
queue depth as existing VMs. Depending on the price of spot VMs,
it could be cheaper (although more disruptive) to allocate a larger
VM and migrate the content of the old VM to the new one. After
the new VM is allocated, the client updates its region table. The
cache client stalls I/O operations while the cache is being resized.

7 EVALUATION
7.1 Methodology
Implementation. The implementation of Redy consists of 13700
lines of C++ code. It includes the cache client library for applications,
cache manager, cache server (shown in Figure 4), and measurement
application (in Figure 9). The client library has a Common Language
Runtime (CLR)wrapper covering all APIs in Table 1, to enable access
by applications in other languages, such as C#.

RDMA transfer in Redy uses the native RDMA library in Win-
dows, NDSPI [40], which supports all RDMA operations. NDSPI has
been used to implement other RDMA-based systems, e.g., FaRM [19].
We implemented an RPC framework based on RDMA for e�cient
operations between clients, servers, and the manager.
Testbed Setup. We evaluate Redy on a Microsoft Azure High Per-
formance Computing cluster [41] using the Standard_HB60rs VMs.
Each VM has 60 vCPUs based on two 2.0GHz AMD EPYC 7551
processors, 228GB of memory, and a 700GB Azure premium SSD.

We run Windows Server 2019 Datacenter as the OS. Each VM is
RDMA-enabled using an NVIDIA Mellanox ConnectX-5 NIC [5].

7.2 Overall Cache Performance
We �rst show the overall performance of Redy caches. In this eval-
uation, we vary data size from very small records (4 bytes) to large
blocks (16 KB). For each size, we set up a cache with latency-optimal
and throughput-optimal con�gurations. The purpose of this evalua-
tion is to show Redy’s optimal performance for each metric and for
di�erent sizes. We compare Redy’s cache performance with the raw
RDMA network. Wemeasure the latter using the o�cial benchmark
tools from Mellanox [3], i.e., nd_read_lat and nd_write_lat for
latency, and nd_read_bw and nd_write_bw for throughput.

Figures 11a and 11b show the results of latency benchmarking
for reads and writes, respectively. Average latency is close to that of
the raw network, 3-4 `s, showing the e�ectiveness of Redy’s latency
optimizations described in Section 4.3. An interesting �nding is
that the write latency is signi�cantly lower than the read latency
for records smaller than 256 bytes. This is because a small amount
of data to be written can be inlined as a parameter in the RDMA
write invocation, thereby avoiding the latency of fetching the data
from main memory to the NIC through the PCIe buses. Inlining no
longer works when the data exceeds a threshold (172 bytes in our
testbed), so the latency increases. In general, the latency is steadily
low until 4 KB records and increases signi�cantly after that.

Figure 12 shows the results for throughput. Read and write
throughput are similar. For example, both reading and writing 16
bytes can achieve about 200 MOPS, an order of magnitude higher
than raw network throughput, showing that Redy batching is ef-
fective at utilizing the bandwidth. When the record size increases,
throughput drops as fewer operations/second are needed to satu-
rate the network. But up to 256 bytes, Redy performs much better
than the raw network.

All latency-optimal con�gurations use one-sided memory access
using no server cores, so Redy is particularly cheap for this case.
Conversely, for record sizes up to 1KB, high-throughput con�gura-
tions work best if they have a few cores to support batching.
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Figure 15: The impact of region migration on reads.
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Figure 16: The impact of region migration on writes.

Between latency-optimal and throughput-optimal con�gura-
tions, there is a big space of con�gurations that make trade-o�s
between latency and throughput. We let the applications customize
cache performance using their SLOs.

7.3 Performance Customizability
O�ine modeling builds interpolated performance models whose
accuracy determines whether they can satisfy users’ SLOs. The
speed of online searching determines how fast we can con�gure a
cache. To evaluate both, we measure the accuracy of the model for
the three million con�gurations in Section 5.2 and the time to search
con�gurations for given SLOs using the algorithm in Figure 10.

We draw 100 performance SLOs between the lowest and highest
latency and throughput values in the model. An SLO consists of
cache latency and throughput, which are drawn independently from
a uniform distribution. For each SLO, we search the con�guration
space for one that Redy predicts will satisfy the SLO. We then
con�gure the cache based on this con�guration, measure its latency
and throughput, and compare them with the SLO. The accuracy
of the model is de�ned by how close the predicted latency and
throughput mimic the real ones. High accuracy means that the real
performance will satisfy the SLO.

Figures 13 and 14 show the results for both latency and through-
put. Each �gure shows three CDFs—the SLO, predicted, and real
performance—of the corresponding metric. Since we draw SLOs
randomly between the lowest and highest values, the SLOs in both
�gures are spread uniformly across their ranges. Figure 13 shows

FASTER
SSD

log headlog tail

Redy

Tiered StorageRead
Write

Write

Figure 17: FASTER with Redy. New records are appended to
both tiers. Reads to records in Redy are only served by Redy.

that the predicted and real latency are close: 92 `B vs. 98 `B at the
median, and 206 `B vs. 212 `B at the 95th percentile. They are all
lower than the requested latency—satisfying the SLO. Figure 14
shows �ndings for throughput: the predicted and real throughput
values are 110.5 MOPS and 110.7 MOPS respectively at the median,
both closely matching the requested throughput of 110.4 MOPS,
and are 211.5 MOPS and 219.3 MOPS at the 95th percentile, also
close to the requested 211.4 MOPS. The latency of the caches is
much lower than the SLOs, while the throughput just reaches the
SLOs, because the searching algorithm in Figure 10 starts from
low-latency low-throughput con�gurations and gradually moves
toward high-latency and high-throughput ones. This matches our
cost-e�cient goal: the average client and server core counts of the
resulting con�gurations are 7.3 and 1.5.

Redy is also fast at �nding con�gurations. The time spent on
searching for the right con�guration for an SLO in the space is 2 `B
to 0.12 B with an average of 0.027 B and a median of 0.01 B , achieving
interactive speed for cache allocation.

7.4 Robustness to Dynamics
When a VM that hosts a part of a cache is to be reclaimed, the cache
client requests a new VM (or multiple VMs) from the manager
and migrates the a�ected regions using a throughput-optimized
con�guration. In our testbed, it takes 1.09 s to online migrate a 1GB
region. This argues for using spot VMs of  27GB, to ensure they
can be migrated within 30s. Thus, it is feasible to use spot VMs that
are available for only a short time, say a few minutes.

We evaluate the performance impact of region migration using
a cache that consists of seven 1GB regions. Initially, all regions are
hosted in one VM. We run this cache with 8-byte records for four
minutes and migrate one, two, and four regions at the second, third,
and fourth minute respectively to a di�erent VM. We measure the
throughput change. Figures 15 and 16 show that the throughput
of both reads and writes drops by around 15%, 25%, and 57% in the
migration of one, two, and four regions without optimizations. By
contrast, the read throughput with unpaused reads is una�ected by
the migration, and the write throughput with pause-on-migration
writes decreases by at most 15%, no matter how many regions are
migrated. This demonstrates that Redy minimizes the impact of
resource dynamics on its caches.

8 FASTERWITH REDY
FASTER is a high-performance open-source key-value store that
is used at Microsoft and elsewhere [14, 38]. It is an example of a
stateful cloud service that can bene�t from using a remote cache,
as discussed in Section 1.1. We integrate Redy with FASTER to
demonstrate its ease of use and practical value.



0.0
0.8
1.6
2.4
3.2
4.0

1 2 4

Th
ro

ug
hp

ut
(M

OP
S)

#Application threads

FASTER (Redy)
FASTER (SMB Direct)
FASTER (SSD)

(a) YCSB (uniform) with 8B
values and 1GB local memory.

0.0
0.8
1.6
2.4
3.2
4.0

1 2 4

Th
ro

ug
hp

ut
(M

OP
S)

#Application threads

FASTER (Redy)
FASTER (SMB Direct)
FASTER (SSD)

(b) YCSB (Zipf) with 8B values
and 1GB local memory.

0.0
0.8
1.6
2.4
3.2
4.0

1 2 4

Th
ro

ug
hp

ut
(M

OP
S)

#Application threads

FASTER (Redy)
FASTER (SMB Direct)
FASTER (SSD)

(c) YCSB (Zipf) with 8B values
and 0.1GB local memory.

0.0
0.8
1.6
2.4
3.2
4.0

1 2 4

Th
ro

ug
hp

ut
(M

OP
S)

#Application threads

FASTER (Redy)
FASTER (SMB Direct)
FASTER (SSD)

(d) YCSB (uniform) with 1KB
values and 1GB local memory.

0.0
0.8
1.6
2.4
3.2
4.0

1 2 4

Th
ro

ug
hp

ut
(M

OP
S)

#Application threads

FASTER (Redy)
FASTER (SMB Direct)
FASTER (SSD)

(e) YCSB (zipf) with 1KB values
and 10GB local memory.

0.0
0.8
1.6
2.4
3.2
4.0

1 2 4

Th
ro

ug
hp

ut
(M

OP
S)

#Application threads

FASTER (Redy)
FASTER (SMB Direct)
FASTER (SSD)

(f) YCSB (zipf) with 1KB values
and 20GB local memory.

0.0
0.8
1.6
2.4
3.2
4.0

1 2 4

Th
ro

ug
hp

ut
(M

OP
S)

#Application threads

FASTER (Redy)
FASTER (SMB Direct)
FASTER (SSD)

(g) YCSB (zipf) with 1KB values
and 40GB local memory.

0.0
0.8
1.6
2.4
3.2
4.0

1 2 4

Th
ro

ug
hp

ut
(M

OP
S)

#Application threads

FASTER (Redy)
FASTER (SMB Direct)
FASTER (SSD)

(h) YCSB (zipf) with 1KB values
and 80GB local memory.

Figure 18: The performance with Redy, SMB Direct, and SSD when FASTER’s working set is larger than local memory.
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8.1 Data Organization in FASTER
FASTER runs as a multi-threaded library in the address space of
an application client. It has a hash index that maps keys to record
addresses. The index is stored in the client’s memory.

FASTER stores records in a hybrid log where the tail of the log
is stored in main memory and the remainder is spilled to storage,
such as a server-attached SSD or a cloud storage service. The log is
organized as a sequence of segments. The tail of the main-memory
section supports in-place updates. The rest is read-only.

A read operation looks up a record in the index and then retrieves
it from memory or storage. To insert a record, it is appended to the
tail and added to the index. To update a record in the read-only
portion of the log, it is appended to the tail in main memory and its
index entry is updated. To free up main memory, the oldest segment
of the read-only main memory section of the log is appended to
storage. To free up storage, the oldest segment is read, its reachable
records are appended to the log tail, and then it is deallocated.

8.2 Integrating Redy
FASTER clients access storage through an interface calledIDevice,
which exposes storage as a byte-addressable sequential address
space. FASTER supports tiered storage, which is a “meta-device”
that wraps a set of IDevice implementations, called tiers. Each
tier is smaller and faster than the next higher tier, and is a replica
of a su�x (i.e., tail) of the higher tiers [31]. FASTER services a read
operation from the lowest tier that has the data.

To keep the tiers consistent, an append operation is applied to
all tiers. It is acknowledged to the client after all tiers have applied
the append. A user can alter this semantics via FASTER’s commit
point setting, which is the lowest tier whose commit denotes the

completion of an update. This is useful for committing quicker than
the highest tier, which may be very slow.

We integrate Redy as an IDevice in this tiered storage, as the
�rst tier (see Figure 17). An SSD is the second tier, which contains
the entire log. Thus, reads are serviced by Redy if the record is stored
in the Redy cache. Otherwise, it is serviced by the SSD. Cloud blob
storage could be a third tier, as a highly-available backup.

8.3 Evaluation
We evaluate the performance of FASTER with Redy using the YCSB
benchmark [16] in the same cloud environment as Section 7. We
compare with two alternatives: a device that only uses local SSD;
and a device that accesses remote memory using SMB Direct, an
RDMA-enabled �le server protocol with higher throughput and
lower latency than the regular Windows �le server [39]. Through-
put is the critical metric for this benchmark, so we con�gure the
Redy cache for high throughput. Our YCSB database contains 250
million key-value records (8-byte key and 8-byte value), ⇠6GB in
total in FASTER. Every operation is a read governed by either a uni-
form distribution or a Zip�an distribution (\ = 0.99). Additionally,
we use a value size of 1 KB, resulting in a ⇠260GB database 1.

Figure 18a shows the throughput of FASTER in MOPS on the
uniform workload, with di�erent storage devices. In this experi-
ment, we give FASTER 1GB of local memory, and the remainder of
the log is spilled to the device. In the tiered device, we allocate an
8GB Redy cache so that all operations are served by Redy. When
there is one thread, FASTER achieves 0.8MOPS with Redy while
SMB Direct and SSD are much lower with less than 0.1MOPS. With
two threads, the throughput with Redy increases to 1.6MOPS. With
SMB Direct and SSD it improves to 0.15MOPS, but that still is 10⇥
lower than Redy. Adding more threads improves FASTER’s per-
formance with all devices, but the gap between Redy and other
alternatives remains large. Figure 18b shows the results with the
Zipf distribution where data accesses are skewed. FASTER uses
local memory to cache frequently-accessed records, which reduces
load to the devices. Hence, the throughput is higher than that with
the uniform distribution for all devices. However, when we decrease

1An extended version of this paper [59] includes more experimental setups and results.



the available local memory for caching in FASTER (similarly when
we increase the database size), both the absolute throughput and
the relative di�erence between Redy and other devices become
closer to that of the uniform distribution, as shown in Figure 18c.

FASTER with Redy achieves higher throughput for large records
as well. Figure 18d shows that with four threads, the throughput
of accessing records with 1KB values is 0.9MOPS with Redy, 8⇥
and 20⇥ higher than with SMB Direct and SSD respectively. Fig-
ures 18e–18h show that even when the client has a local cache
as large as 10GB, 20GB, 40GB, and 80GB respectively, the tail of
the Zip�an distribution still bottlenecks the overall performance.
Spilling requests to Redy has at least 2⇥ higher throughput than
other cloud services, i.e., SMB Direct and SSD storage.

Figure 19 varies the size of local memory used by FASTER (with
four threads). With 8GB local memory, FASTER services all (uni-
form) operations from local memory, achieving high throughput of
5MOPS. When we spill the entire log to the storage device, FASTER
achieves 1.4MOPS using Redy, vs. 0.15MOPS and 0.12MOPS for
SMB Direct and SSD. Compared to local memory only, the perfor-
mance of FASTER with Redy decreases by 72% (vs. 97% with SMB
Direct and 98% with SSD); but it saves memory cost by 100%, since
it uses stranded memory, which is essentially free.

To show the impact of the cache size in the tiered device we
vary the Redy cache size from 0 to 8GB (Figure 20). As expected,
performance increases signi�cantly when more cache is allocated.

In summary, when FASTER’s working set exceeds local memory,
spilling data to a Redy cache results in better performance than
spilling to the RDMA baseline or SSD. We note FASTER using
synchronous local-memory outperforms the asynchronous device
interface due to I/O code path and context switching overheads. As
new high-throughput devices such as Redy become commonplace,
we believe this is an important area for future optimization.

9 RELATEDWORK
Redy is an RDMA-accessible remote dynamic cache targeted for
data centers. No systems that we know of o�er Redy’s SLO-based
con�guration and dynamic recon�guration. We summarize related
systems and explain the di�erences as follows.
Cache Servers. A cache server is an in-memory distributed key-
value store that supports access by a large number of clients. It is
typically used to store content that is accessed over the Internet.
Popular cache servers are Memcached [4] and Redis [6]. By contrast,
Redy o�ers inexpensive remote caches in the cloud environment.
CompuCache [58] is a cloud service that supports both data caching
and compute o�oading. However, since it uses RPC, it cannot use
stranded memory.
Disaggregated Memory. The systems community has been ex-
ploring the use of disaggregated memory for over a decade. Lim et
al. [34, 35] propose the use of specialized memory servers. In�n-
iswap [24] avoids specialized hardware by using remote memory
as a paging device accessed via one-sided RDMA. Aguilera et al. [7]
exposes remote memory as �les. LegoOS [47] is a disaggregated
OS that emulates Linux APIs with RDMA implementations. Gao
et al. [21] investigate network requirements to support disaggre-
gated memory without degrading application performance. Zhang
et al. [60, 61] describe the bene�t and performance overhead of

using disaggregated memory for DBMSs. In contrast to the above
work, Redy abstracts remotely accessible memory as a cache, rather
than as process memory or as a �le.
RDMA. RDMA has been a subject for research in the database, sys-
tems, and networking communities for many years [20]. Herd [27]
and FaRM [19] are RDMA-accessible key-value stores. FaRM also
supports multistep transactions, as does [11, 12]. DFI [53] provides
a data �ow abstraction based on RDMA. Cai et al. [13] propose a
distributed shared memory framework with an RDMA-based mem-
ory coherence protocol. Liu et al. [36] optimize the bandwidth of
RDMA speci�cally for shu�es. Ziegler et al. [63] report on mi-
crobenchmarks of RDMA. Li et al. [33] explore RDMA performance
bene�ts to a DBMS via SMB Direct. Redy is di�erent from these
works in its cache design that supports �ne-grained data accesses
and performance customizability. Kalia et al. [28] provide RDMA
developers with guidelines for low-level RDMA optimizations. In
comparison, Redy hides RDMA complexities with an easy-to-use
cache API. Kalia et al. also explore the bene�t of batching, but
speculatively and only for unconnected QPs.
VM Scheduling and Migration. Redy’s cache manager uses the
cluster VM scheduler to allocate VMs for caches. The challenges of
allocating VMs for large data centers are discussed in [18, 26, 44, 46].
Redy’s allocator is rather unique in requiring a minimum amount
of memory that can be partitioned across multiple VMs, each VM
satisfying a minimum ratio of cores to memory.

Redy migrates cache when its VM fails or is evicted. This is
similar to VM migration, but without the need to freeze program
execution to move its state. Some past work on VM migration
includes [15, 49, 50, 56]. To mitigate the e�ect of VM eviction,
researchers are exploring dynamic alternatives, where VMs can
shrink or grow to o�er all unallocated resources on the server
where it runs [10, 48]. Extending Redy’s ability to exploit dynamic
resource allocation is an interesting avenue for future work.

10 CONCLUSION AND FUTUREWORK
This paper described Redy, a cloud service that provides high per-
formance caches using RDMA-accessible remote memory. Redy
automatically con�gures resources for a given latency and through-
put SLO and automatically recovers from failures and evictions of
remote memory regions. We integrated Redy with a production
key-value store, FASTER. The experimental evaluation shows that
Redy can deliver its promised performance and robustness.

One future challenge is sizing the server-local memory cache
by considering factors such as application-required response-time
and throughput, the cache miss rate as a function of cache size,
and the latency of servicing a cache miss. A second challenge is to
integrate the cache manager’s cache allocation with the cluster’s
VM allocator. We expect this will bene�t from extensions to the
latter, as discussed in Section 6.1.
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