
Performant Almost-Latch-Free Data Structures
Using Epoch Protection

Tianyu Li
litianyu@csail.mit.edu

MIT CSAIL
Cambridge, MA, USA

Badrish Chandramouli
badrishc@microsoft.com

Microsoft Research
Redmond, WA, USA

Samuel Madden
madden@csail.mit.edu

MIT CSAIL
Cambridge, MA, USA

ABSTRACT
Multi-core scalability presents a major implementation challenge
for data system designers today. Traditional methods such as latch-
ing no longer scale in today’s highly parallel architectures. While
the designer can make use of techniques such as latch-free pro-
gramming to painstakingly design specialized, highly-performant
solutions, such solutions are often intricate to build and difficult to
modify in the face of evolving requirements. Of particular interest
to data system designers is a class of data structures we call almost-
latch-free; such data structures can be made scalable in the common
case, but have rare complications (e.g., dynamic resizing) that pre-
vent full latch-free implementations. In this work, we present a new
programming framework called EPVS to make it easy to build such
data structures. EPVS makes use of epoch protection to preserve
performance in the common case of latch-free operations, while
allowing users to specify critical sections that execute under mu-
tual exclusion for the rare, non-latch-free operations. We showcase
the use of EPVS-based concurrency primitives in a few practical
systems to demonstrate its competitive performance and intuitive
guarantees. EPVS is available in open source as part of Microsoft’s
FASTER project [2, 3].

ACM Reference Format:
Tianyu Li, Badrish Chandramouli, and Samuel Madden. 2022. Performant
Almost-Latch-Free Data Structures Using Epoch Protection. In Data Man-
agement on New Hardware (DaMoN’22), June 13, 2022, Philadelphia, PA, USA.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3533737.3535091

1 INTRODUCTION
Modern processors have seen a steady increase in core counts
over the past several decades. Consequently, modern applications
use many more threads and depend on safe and performant con-
current access to shared data structures. Traditional abstractions
such as mutexes or reader-writer latches scale poorly under this
environment [6, 7]. To alleviate these bottlenecks, modern sys-
tems use a wide range of techniques for latch-free programming.
In particular, in recent years the idea of epochs [9] has become a
popular way to scale highly concurrent data structures such as
indexes [10, 14, 18], key-value stores [4, 15], or transaction process-
ing systems [13, 16, 17, 19]. However, it is difficult to program and

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
DaMoN’22, June 13, 2022, Philadelphia, PA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9378-2/22/06.
https://doi.org/10.1145/3533737.3535091

reason about epoch-based latch-free systems, as such programs
typically do not have critical sections, and developers must reason
about numerous interleavings to establish invariants and ensure cor-
rectness. In our own experience building FASTER [4] and Silo [17],
this requires months of careful design and many lines of subtle
code, followed by lengthy debugging sessions.

To make matters more complicated, there are workloads that
latch-free programming cannot easily support. For example, con-
sider a simple resizable array (holding 8-byte object references)
implementation, with only the following methods for simplicity of
illustration:
• Count(): the number of elements in the array. May include ele-
ments that are under construction from a concurrent Push call.

• Read(i): read the element at index i (0 ≤ i < Count()).
• Write(i, v): write v to entry at index i (0 ≤ i < Count()).
• Push(v): Add an entry with value v to the end of the array.

Users expect the array to grow automatically to accommodate
new elements added via Push. The textbook single-threaded imple-
mentation copies content into a new array with double the current
size when growth is required. Unfortunately, this is very difficult to
implement with latch-free programming; current hardware atomic
instructions can only support limit-size updates (e.g, aligned 64-bit
length variables), and cannot prevent interleavings of the growth
operation and concurrent read/write operations. We call this type
of data structure “almost-latch-free”, as rare complications – in
the case of the resizable array, Push calls that trigger resizing –
prevent efficient latch-free implementation of these data structures.
Programmers often need to settle for a significantly less perfor-
mant alternative with a latch (e.g., protect normal list operations
with a shared latch, and the growth operation with an exclusive
latch), or invest in a more complex solution (e.g., a concurrent vec-
tor [1]). There are many more such examples in data management.
For example, imagine a transactional system that compacts and
reorganizes storage blocks as they become cold, but must exclude
concurrent transactional access during reorganization [11], or a
sharded key-value store, where threads on a shard share access to
a mostly static mapping of key ownership, except when ownership
transfers occur [8, 12].

In this paper, we present a general solution to the almost-latch-
free challenge, called Epoch Protected Version Scheme (EPVS).
EPVS introduces lightweight critical sections programmers can
use to protect vulnerable operations of the almost-latch-free data
structure while adding minimal overhead to the other scalable
concurrent operations. At the heart of EPVS is FASTER’s highly
optimized epoch protection framework that can sustain tens of
millions of fine-grained operations per second. The simplest way
to use EPVS is as a more scalable replacement for the standard

https://doi.org/10.1145/3533737.3535091
https://doi.org/10.1145/3533737.3535091

read-write latch. For advanced users, EPVS allows complex orches-
tration of concurrent operations and long-running critical sections
through a general state machine model. For example, [15] and [11]
both implemented bespoke almost-latch-free solutions that can be
simplified with EPVS. Our experience shows that EPVS can deliver
competitive performance and is intuitive to use.

Summary of Contributions
• We identify almost-latch-free data structures as a common chal-
lenge in building scalable data systems.

• We present EPVS, a general solution to the almost-latch-free
problem, which makes use of epoch protection to achieve highly
scalable operation and strong mutual exclusion properties where
necessary.

• We evaluate EPVS in the context of practical data system chal-
lenges to demonstrate its performance and ease of use.

2 BACKGROUND AND RELATEDWORK
Underlying the challenge of thread scalability is a fundamental
hardware restriction — parallel threads run on physically distinct
processor cores, and information must travel from one core to the
other for thread coordination to occur. This incurs communication
overhead that is often expensive for the application. Consequently,
the key design principle for scalable multi-threaded data structures
is to avoid thread coordination where possible. One natural design
pattern to develop based on this principle is to have threads run
uncoordinated in predefined time periods called epochs, and only
coordinate at epoch boundaries.

Epochs were first introduced by Kung and Lehman [9] as an
efficient garbage collectionmechanism for concurrent binary search
trees. Garbage collection remains an important use case of epochs
in more modern concurrent data structures such as the Bw-tree [10,
14, 18], but epochs have been used in a more general sense as well.
Silo [17] is an OLTP system that uses epochs to improve transaction
throughput, where threads commit transactions only at the end of
epochs to reduce the amount of synchronization overhead. Similarly,
the concept has been extended to later transactional systems such
as [13]. For this paper, we adopt a more general notion of epoch
protection for thread coordination and safe code scheduling, as
formulated in FASTER [4], which we will introduce in detail.

At a high level, epoch protection consists of a global epoch
number E and a set of participant threads T . Threads increment
E using atomic instructions to signal the end of the old epoch.
Participant threads each own a local copy of E, denoted Et , t ∈ T ,
that periodically synchronizes with the global value. We define an
epoch number e to be safe if ∀t ∈ T ,Et > e . Intuitively, an epoch
number is safe and no thread is active with local epoch number e
(although theymay be running activelywith a larger epoch number).
Importantly, programmers often want to associate actions with the
end of epochs. Executing an action after the associated epoch is safe
implies all threads have discovered the intention to execute this
action, and therefore presumably done the necessary preparatory
work (e.g., finish using a resource) before releasing their epoch. We
summarize the epoch framework API below:
• Acquire():Add a thread t to T and set Et = E.

• Refresh(): Et = E, temporarily drops and immediately reac-
quires protection. If a thread is expected to be long-running,
refresh is cheaper than calling Release() followed by Acquire.

• Release(): Remove current thread t from T .
• BumpEpoch(e, action): increment E to e and associate action
with the old epoch.
A code block is considered “protected” if it is guaranteed to exe-

cute within a single epoch, and therefore cannot interleave with
epoch change or the associated action. Programmers can achieve
protection by acquiring and not refreshing or releasing the epoch
within a code block. We now give a concrete example in Figure 1.
Consider a simple workload where threads share access to a re-
source that must occasionally be renewed (e.g., a shared data struc-
ture that is moved out of a memory region for memory compaction).
To renew a resource, we simply construct a new object for use and
reclaim the old. It is safe to use the resource fully concurrently, but
the resource must not be reclaimed when it is under active use. One
might synchronize these threads by protecting resource usage with
a shared latch, and renewing the resource under an exclusive latch.
However, on most shared latch implementations, acquiring the
shared latch requires a write operation to update a counter, which
results in cache-line ping-ponging that limits thread scalability.
Instead, we can use the epoch protection framework to solve this
problem as shown in Figure 1. Consider a thread t executing from
line 6 while a separate renewal thread starts executing from line 14
in parallel. On line 16, the global epoch E is incremented from eold
to enew . If t observed enew when refreshing on line 8, then it must
be using the new resource (which is not being reclaimed) as the
read of r happened after line 15. If t observed eold instead, it may
see r before the renewal and use the old resource. However, because
t does not refresh its epoch while using the resource, eold does not
become safe; by registering reclamation as an action to execute
after the epoch is safe, we ensure reclamation cannot happen while
the resource is in use. Compared to a shared latch, refreshing an
epoch reads from the global shared epoch E, and a write to the local
Et variable, avoiding any potential cache-line ping-ponging on the
common code paths.

1 EpochFramework e;
2 Resource r;
3 ...
4 // Run concurrently on each thread :
5 e. Acquire ();
6 while (true)
7 {
8 e. Refresh ();
9 r.Use ();
10 }
11 e. Release ();
12 ...
13 // To update resource :
14 var old_r = r;
15 r = new Resource ();
16 e. BumpEpoch (() => old_r . Reclaim ());

Figure 1: Example Use Case of Epoch Protection Framework

3 EPOCH-PROTECTED VERSION SCHEMES
While the previously mentioned epoch protection framework is
promising for many use cases, it is insufficient for the almost-latch-
free problem. The key missing ingredient here is critical sections;
even as the epoch protection framework ensures execution of
BumpEpoch actions only after all participants have seen the end
of the epoch, the action is still executed in parallel with other pro-
tected regions. This is sufficient for excluding some interleavings
(e.g., free-before-use when garbage collecting), but is still funda-
mentally a latch-free technique. Imagine implementing a resizable
array with epochs — if we were to similarly resize the array with
a BumpEpoch call, the resize operation will occur in parallel with
normal write operations, which may cause some concurrent up-
dates to be missing from the new array. This is a key limitation of
epochs as formulated in [4], and one we address with our proposed
framework of EPVS.

3.1 Version Schemes
We introduce the idea of versions to augment epochs. Protected
regions of code execute from start to finish within a certain version,
similar to epochs. However, unlike epochs, versions have defined
transitions associated with each version change. For an almost-
latch-free data structure like the resizable list, it operates in “stable
state” in most cases, and allows for latch-free concurrent opera-
tions. When operations such as resizing happen, the data structure
undergoes a version change, which changes the data structure and
limits concurrent operations, until it is in stable state again.

The simplest way to perform a version change is to execute a
transition function in a critical section where no concurrent pro-
tected code is allowed to execute. Intuitively, we execute concurrent
operations such as reads and writes in protected regions, and resize
the array by bumping the epoch. The epoch framework already
ensures that the resize will not start until concurrent operations
have finished; to additionally ensure mutual exclusion, we enforce
that future operations do not start until the resize is finished, which
we accomplish through a boolean flag that threads spin-wait for
when resizing is underway. Note that in this simple form, version
schemes behave very much like traditional reader-writer latches,
with concurrent operations protected under shared mode and ver-
sion changes happening in exclusive mode. The difference here
is that concurrent operations incur little to no overhead due to
the use of epochs, until a version change happens; in exchange,
version changes are more expensive than obtaining an exclusive
latch, as we will show later in Section 6. This tradeoff, however,
results in better overall performance as long as version changes are
infrequent.

3.2 Transition State Machines
While intuitive to understand, the simple version schemewe showed
earlier limits concurrency in many cases. Specifically, if the critical
section takes a long time (e.g., resizing an already large array), all
concurrent work is paused and scalability will suffer. This issue
is further exacerbated if completion of the critical section is de-
pendent on some external signal (e.g., completion of a background
task, persistence of data on disk). The source of this issue is that
we assumed it is unsafe to execute protected regions outside of the

REST
RESIZE

REST state: full concurrent
operations

RESIZE state: copying in progress,
read/push allowed, write disallowed

critical section:
Allocate new array
and start copying

critical section:
Swap arrays,
deallocate old

Figure 2: Resizable array with two-phase state machine –
adding an intermediate RESIZE state allows for concurrent read
and push operations

stable state. Consider again the example of resizable arrays; it is
possible to define an intermediate, semi-stable state of RESIZE and
allow limited forms of operations while the array is resizing. We
summarize the logic in Figure 2, where REST is the stable state as
before. In RESIZE, both the old and the new arrays are visible, and
some thread (either background or collaboratively by participants)
is copying content from the old array to the new array. Let us as-
sume we are resizing from size c to 2c , copying from arr_old to
arr_new. Firstly, we disallow writes in this state to index range
[0, c), as writers must be aware of the copying progress to decide
whether they should write to arr_old or arr_new, which may re-
sult in excessive thread synchronization on the copying progress;
any such writers must wait until REST. Then, because no writes are
allowed to happen, any reads into index range [0, c) can proceed as
normal to arr_old. Any push requests serviced at this state must
write to arr_new in the index range [c, 2c), as the original array
was full up to c . This region of arr_new will not be copied into
from arr_old and is therefore safe to push into, and subsequently
read or written normally. Now that we have shown how to operate
the resizable array in RESIZE, we simply need to define how to
transition between these two states. With mechanisms similar to
before, we can transition between these two states using critical
sections. Intuitively, to start resizing, we allocate arr_new and start
the copying process in the critical section from REST to RESIZE;
to restore stable state after copying is done, we swing the array
pointer from arr_old to arr_new and deallocate arr_old.

EPVS generalizes schemes like this into transition state machines.
Transition state machines allow programmers to specify a number
of semi-stable intermediate states like RESIZE during a version
change, and move between these states using critical sections. Each
protected region is guaranteed to execute entirely within one state
that is made known at the start of execution. We show the EPVS
state machine abstraction below:
• GetNextStep(State current): Returns whether the next state
is available and the state

• OnEnteringState(State from, State to): Transition logic
that executes in isolation before entering the next state.

Here, State is one 64-bit variable that encodes both a version num-
ber and a flag that indicates the phase of transition (e.g., RESIZE). A
state machine always starts at REST in some version v , and ends at
REST at a larger version. Along the way, a state machine defines a se-
ries of semi-stable states, along with a critical section that executes

in isolation between two states. Clearly, our simple version scheme
shown in the last subsection is just a trivial state machine with one
REST state that always transitions directly to itself. Importantly, a
state machine can dynamically decide whether a next state is ready;
for example, a resizable array may stay in RESIZE until the copying
is complete, and only then will GetNextStep signal that the next
state is REST for transition to occur.

3.3 Putting it Together: The EPVS API
To summarize, EPVS builds on top of a general epoch protection
framework to support critical sections and transition statemachines.
This allows programmers to largely retain the performance of latch-
free programming on the common, highly concurrent operations in
almost-latch-free data structures, while being able to easily handle
the occasional expensive calls with critical sections. We summarize
the external facing API of EPVS below:
• CurrentState(): Peek at current state
• Enter(): Begin executing protected region; protected region will
execute entirely within the returned state

• Leave(): Exit protected region
• AdvanceVersion(VersionSchemeStateMachine): Execute the
given state machine to advance the version (asynchronously).
Only one state machine can be active at a given time.

Detailed example code using EPVS is available in Appendix A.

4 EXAMPLES
We now briefly sketch how EPVS can be used to solve many almost
latch-free problems in data management to showcase its generality.

Cluster Ownership Management: Modern key-value stores
like FASTER [4] are often highly scalable on a single node. How-
ever, most practical workloads require that a key-value store be
distributed across multiple shards; this results in the need to enforce
shard key ownership and ensure safety during ownership transfers.
In short, shards will need to validate their ownership of a key before
performing operations. In the common case, ownership is static
and validation is a simple lightweight step. However, suppose that
a shard decides to drop ownership of key k during an ownership
change, it cannot declare the change done until all earlier validated
requests for k finish; otherwise, a race can result in operations on k
after the shard drops ownership. With EPVS, we can use a simple
one-state version scheme to update the ownership mapping and
execute each request entirely within a protected region. This en-
sures safety during ownership transfers without impacting thread
scalability on a single node.

Background Data Reorganization: Hybrid Transactional An-
alytical Processing (HTAP) systems often need to transform cold,
read-mostly data into a more read-optimized format. Such trans-
formations are not always safe to complete with concurrent trans-
actions; for example, in [11], the transformation process needs to
compact each storage block such that tuples are laid out contigu-
ously to each other, and then reorganize storage layout on the con-
tiguous block for analytics. A correct implementation must exclude
transactional access that may modify the block, without latching
each block, which makes transactional access in normal situations
more expensive. [11] solves this problem with a 4-stage transfor-
mation process integrated with the DBMS’s concurrency control

system [19]. With EPVS, the same algorithm can be rewritten as a
EPVS state machine. When the system decides that a storage block
should be transformed, it registers a version change with EPVS,
with an intermediate state where transformation is underway, and
transactional writes are temporarily blocked.

Asynchronous Checkpointing: Traditional DBMS recovery
methods using a write-ahead log lead to a serial bottleneck for
update-intensive workloads. To alleviate such bottlenecks, one can
utilize the concurrent prefix recovery (CPR) model to asynchronously
and incrementally checkpoint DBMS state, and each CPR check-
point can be regarded as executing a EPVS state machine. Again
using the FASTER system as an example — in the common code
path, FASTER threads modify entries in-place; however, during
checkpointing, the database is temporarily frozen while its con-
tents are flushed to storage, and updates go through a special read-
copy-update path. Using EPVS, threads enter WAIT_FLUSH state and
determine the checkpoint content (i.e., the portion of the database
to freeze) in the transition critical section. Threads in WAIT_FLUSH
read-copy-update, and transition the system back to rest when flush
is complete. Note that while this algorithm is similar to the one
originally presented in [15], it is noticeably simpler with only two
states (three if we were to follow the strict model in [15], where
threads also have to wait for I/Os issued prior to the checkpoint
to complete first). This is because the original algorithm was built
directly on top of the epoch framework, and must guard against
more interleavings due to the lack of critical sections.

5 IMPLEMENTATION
We first describe FASTER’s efficient, latch-free implementation1 of
the epoch protection framework sketched in Section 2 as a basis
for EPVS. At the core of this implementation is the global epoch
table – an array of epoch entries consisting of a thread id, local
epoch number, and padded to occupy an entire cache line to avoid
false-sharing between threads. Threads access the epoch table as a
latch-free linear probing hash table to add and remove themselves
during Acquire and Release calls; for Refresh, they can locally
cache the array offset for their entry without a hash table lookup.
We additionally allocate an array for epoch-action pairs called the
drain list that BumpEpoch calls write to. Our implementation of the
epoch framework is collaborative in nature, and participants scan
the epoch table at the end of each call to compute the safe epoch
and traverse the drain list to perform any associated actions.

Note that in our current implementation, the global epoch table
and drain list are statically preallocated and fixed-sized. When the
number of concurrent threads is large compared to the size, hash
table performance may degrade, and eventually block new partici-
pants until some threads Release; similarly, frequent BumpEpoch
calls may fill up the drain list and block until epochs are safe. We do
not observe this to be a major concern in practical deployments, as
it is often desirable to limit max threads in an application for perfor-
mance anyways, and because our formulation of EPVS processes
version changes sequentially, which limits the drain list size.

We implement EPVS as a layer on top of the epoch framework.
At a high level, threads enter and leave a version as they would an
epoch, with the added responsibility to:

1https://aka.ms/faster-epochs

https://aka.ms/faster-epochs

• block when another thread is executing a critical section
• step the state machine if possible
We use a single 64-bit atomic State struct to store a version num-
ber, current state, and a flag on whether a thread intends to ex-
ecute a critical section (intermediate state flag). Enter call ac-
quires epoch protection and checks the current state, and sus-
pends and retries until the state is not intermediate. To start a
state machine, the AdvanceVersion call tries to atomically swap in
a VersionSchemeStateMachine object, and retries later if a state
machine is already underway. In some cases, multiple threads may
attempt to install state machines concurrently that do duplicate
work (e.g., two threads inserting entries to an array concurrently
request resizing at the same time). To prevent this, users may ei-
ther handle it with application-specific logic or optionally specify
the exact version a state machine is advancing to, and EPVS will
disregard a state machine if it is behind the current EPVS version.
Stepping the state machine is achieved by:

(1) checking if there is a next state available
(2) if so, attempting to atomically set state to the intermediate

state
(3) bumping the epoch with action to execute transition critical

section, and transitioning from the intermedate state to next
state

The primary challenge in implementing EPVS is ensuring that
the system makes progress even when threads are not constantly
refreshing. Imagine an otherwise quiescent resizable array imple-
mented with EPVS, with one Push call triggering a resize. We would
like the push call to succeed and the resizing to complete without
the need for future calls. To guarantee this, each time we step the
state machine, we include an additional step attempt. For state ma-
chines that may delay a step (e.g., until copying is done in resizable
array), we require that the state machine itself triggers the step
when a step becomes available.

6 EVALUATION
Wenow evaluate the performance of EPVS in a variety of workloads,
seeking to address the following questions:
• Does EPVS generalize to a variety of data management work-
loads?

• Does EPVS provide increased scalability and lower cost compared
to alternative synchronization solutions?

• Does EPVS perform gracefully under extreme conditions (e.g., fre-
quent version changes, frequent thread context switches, limited
memory space)?
We implement EPVS in C# as discussed before. We ran all ex-

periments on the Azure public cloud [5], using the machine type
Standard_D48s_v3, which has 48 vCPUs (roughly equivalent to 2.30
GHz Intel Xeon E5-2673 v4 CPUs) across 2 CPU sockets.

6.1 End-to-End Experiments
Cluster Ownership Management: Figure 3 shows a comparison
of our prototype of a sharded version of the FASTER key-value
store, which first validates incoming requests for ownership before
executing. We track ownership similar to Redis-cluster using 16-bit
hash buckets; ownership information for each shard is stored in a
local C# ConcurrentDictionary object. We use a YCSB workload

no validation reader-writer-latch EPVS

8 16 24 32 40 48
#cores

20
40
60
80

Th
ro

ug
hp

ut
(M

 O
p/

s)

Figure 3: Scalability of FASTER-remote key validation

with 50:50 read-write ratio and uniform distribution, and report
the average throughput on three configurations: one without any
validation, one with validation protected by a reader-writer latch,
and one with EPVS. We do not trigger any ownership transfer for
the purpose of this benchmark. We can see that EPVS has similar
scalability as the no-validation baseline, and is much more scalable
than the naive latch-based baseline.

AsynchronousCheckpointing:Wenow compare EPVS against
a hand-written latch-free epoch-based checkpointing solution as de-
scribed in [15].We again use a YCSBworkloadwith 50:50 read-write
ratio and uniform distribution, triggering checkpoints periodically.
Checkpoints are written to /dev/null/for speed, such that the
checkpointing mechanism itself, rather then the disk, is stressed.
Note that we only show scalability on a single CPU socket to min-
imize interference from NUMA in this experiment. We use two
models of operations: fine-grained, where each protected region
consists of one key-value operation, and coarse-grained, where
each protected region consists of 16384 operations. As shown in
Figure 4, EPVS retains most of the performance and scalability of
the original FASTER CPR implementation when operations are
fine-grained and checkpoints are frequent. It is important to note
that the original CPR algorithm was designed in such way that
threads never block each other unless accessing the same record
during checkpointing, from which most of its complexity derives.
The EPVS-based solution, on the other hand, forces threads to wait
while a critical section is underway. We can see this manifest in
the coarse-grained operations case in Figure 4, where the original
solution outperforms EPVS. Such cases are rarely encountered in
practice, however. In exchange for performance in this edge case,
we were able to reimplement the necessary checkpointing mech-
anism in FASTER using EPVS in just a few hours with dozens of
lines of code, whereas the original solution took months of subtle
engineering and many lines of code with supporting mechanisms.
While EPVS is not optimal in performance, it achieves most of the
speed-up of FASTER CPR with a fraction of its complexity.

Resizable Array: Lastly, Figure 5 compares throughput of 4
implementations of our resizable array example in earlier sections.
Here, latch-free-mock is an ideal (and unrealistic) latch-free imple-
mentation where we provision a large array such that no resizing
is required for the experiment. Note that this is not a reasonable
implementation for most applications and instead represents an
upper limit for performance. We provide an additional baseline
where we protect array resizing under exclusive latches, and other
operations under shared latches. For EPVS, we implement the two
schemes detailed in Section 3, as simple-EPVS and 2-phase-EPVS,
respectively. We randomly generate one million operations with p%

Original FASTER EPVS

4 8 12 16 20 24
#cores

10
20
30
40

Th
ro

ug
hp

ut
(M

 O
p/

s)

(a) 500ms checkpoints, fine-
grained epoch

4 8 12 16 20 24
#cores

10
20
30
40

Th
ro

ug
hp

ut
(M

 O
p/

s)

(b) 500ms checkpoints, coarse-
grained epoch

4 8 12 16 20 24
#cores

10
20
30
40

Th
ro

ug
hp

ut
(M

 O
p/

s)

(c) 25ms checkpoints, fine-
grained epoch

4 8 12 16 20 24
#cores

10

20

30

40

Th
ro

ug
hp

ut
(M

 O
p/

s)

(d) 25ms checkpoints, coarse-
grained epoch

Figure 4: Scalability of FASTER-KV checkpointing

push operations, and (1−p)/2% each for read and write operations.
The array starts at 1 million elements and we issue 1 million opera-
tions per thread. We can see in Figure 5 that EPVS-based solutions
are as scalable as the latch-free baseline, and perform significantly
better than the latched alternatives. That said, overall throughput
using EPVS is lower than the latch-free-mock due to the intrinsic
overhead of epochs (a few random memory access), which is expen-
sive compared to the extremely fast array operations (one random
memory access). As we show in other experiments, this cost is neg-
ligble for many other workloads. For pushes, it is also worth noting
that we would expect the latch-free-mock to perform twice as well
as other solutions, due to the added amortized cost of resizing. Addi-
tionally, push itself cannot be a linearly scalable operation as push
percentage increases, as there is workload-induced contention at
array tail. Although the two-phase-EPVS array implementation is
in theory superior to the simple-EPVS one, resizing is exponentially
rare (and still relatively fast) that it does not affect overall latency or
throughput in any appreciable way. It is also important to note that
2-phase-EPVS displays no advantage over simple-EPVS. This is due
to increased overhead in the state machine logic (comparatively
expensive as the protected region is a simple memory access) and
the relatively infrequent and cheap resizing. In practice, we have
discovered that additional phases in the state machine is usually
only worth the overhead if protected operations would otherwise
have to wait for I/O or other similarly expensive process.

6.2 Microbenchmarks
Wenow evaluate the performance of EPVS in a series ofmicrobench-
marks to better understand its limits and sensitivity to implementa-
tion parameters. For these experiments, each thread protects hash-
ing of some local bytes, which simulates work but does not generate
any contention between threads; the synchronization method used
is the only source of contention. For each experiment, we run 1
million simulated operations per thread.

Impact of Version Change Frequency: In this experiment,
we vary the frequency of version change by participating threads.
Each thread will trigger a version change with probabilityp for each
operation. Other than EPVS, we also provide two baselines where
operations are executed without any synchronization (latch-free)
or with mutual exclusion (latched). We can see from the results in

latch-free-mock latched simple-EPVS 2-phase-EPVS

8 16 24 32 40 48
#cores

100
200
300
400

Th
ro

ug
hp

ut
(M

 O
p/

s)

(a) p=0%

8 16 24 32 40 48
#cores

10
20
30
40

Th
ro

ug
hp

ut
(M

 O
p/

s)

(b) p=10%

8 16 24 32 40 48
#cores

5

10

15

20

Th
ro

ug
hp

ut
(M

 O
p/

s)

(c) p=50%
Figure 5: Scalability of EPVS Resizable Array

latch-free
p=0

p=1e-5
p=1e-4

p=1e-3
p=1e-2

p=1e-1
p=1

latched

8 16 24 32 40 48
#processors

10
20
30
40

Th
ro

ug
hp

ut
(M

 O
p/

s)

Figure 6: Sensitivity Analysis of Version Change Frequency

Figure 6 that EPVS retains competitive performance when version
change is infrequent as before; however, performance begins to
degrade for more frequent version changes, both because more syn-
chronization is required and because version change is expensive.
When version change is frequent, EPVS is less performant than
simply executing protected regions under a latch. This is because
version change is relatively expensive compared to a latch given
epoch and state machine mechanics. To summarize, EPVS performs
best when version change is rare compared to normal operations.

Impact of Epoch Table Size: Recall from Section 5 that EPVS
is implemented on top of the epoch protection framework, which is
in turn built on a fixed-size latch-free hash table. In this experiment,
we vary the size of this table and report the resulting throughput.
All experiments execute with version change probability 1e-4. We
can see from the results on the left in Figure 7 that with a small
epoch table size, EPVS experiences reduced scalability as threads
crowd the table and EPVS operation repeatedly scans the table for
a spare slot. This problem is alleviated as table size increases; we
have found that in general, provisioning a table with at least double
the thread count is desirable for performance. One would expect
that with large tables, computing the safe epoch becomes more
expensive as it requires scanning every entry in the table. This
effect does not appear to be profound, as the epoch table is still a
relatively small chunk of contiguous memory even for large table
sizes, which makes it cheap to scan. Recall from earlier as well that
we can optimize EPVS to skip hash table lookup for long-running

e=64 e=128 e=256 e=512 e=1024

8 16 24 32 40 48
#processors

10

20

30

Th
ro

ug
hp

ut
(M

 O
p/

s)

(a) enter-leave

8 16 24 32 40 48
#processors

10

20

30

Th
ro

ug
hp

ut
(M

 O
p/

s)
(b) refresh

Figure 7: Sensitivity Analysis of Epoch Table Size

threads, by using Refresh instead. We show such a run on the right
side of Figure 7, and see that indeed this improves scalability for
smaller table sizes.

7 CONCLUSION
We presented EPVS, a framework for concurrent programming that
combines the raw performance of latch-free programming with the
intuitive guarantees of critical sections and mutual exclusion. EPVS
is implemented on top of an efficient epoch protection framework
that can easily scale up to millions of fine-grained operations per
second and dozens of cores. Our evaluation of EPVS suggests that
it is both easy to use and highly efficient. EPVS is available in open
source as part of Microsoft’s FASTER project [2, 3].

ACKNOWLEDGMENTS
We are grateful for the support of the MIT DSAIL@CSAIL member
companies.

REFERENCES
[1] 2021. Intel® oneAPI Threading Building Blocks (oneTBB) Documentation

for concurrent_vector. https://www.intel.com/content/www/us/en/develop/
documentation/onetbb-do.

[2] 2022. Epoch Protected Version Scheme (source code). https://aka.ms/epvs.
[3] 2022. Microsoft FASTER. https://github.com/microsoft/FASTER.
[4] Badrish Chandramouli, Guna Prasaad, Donald Kossmann, Justin Levandoski,

James Hunter, and Mike Barnett. 2018. FASTER: A Concurrent Key-Value Store
with In-Place Updates. In Proceedings of the 2018 International Conference on
Management of Data (SIGMOD ’18). ACM. http://doi.acm.org/10.1145/3183713.
3196898

[5] Marshall Copeland, Julian Soh, Anthony Puca, Mike Manning, and David Gollob.
2015. Microsoft Azure: Planning, Deploying, and Managing Your Data Center in
the Cloud (1st ed.). Apress, USA.

[6] Stavros Harizopoulos, Daniel J. Abadi, Samuel Madden, and Michael Stonebraker.
2008. OLTP through the Looking Glass, and What We Found There. In Proceed-
ings of the 2008 ACM SIGMOD International Conference on Management of Data

(Vancouver, Canada) (SIGMOD ’08). Association for Computing Machinery, New
York, NY, USA, 981–992. https://doi.org/10.1145/1376616.1376713

[7] Ryan Johnson, Ippokratis Pandis, Nikos Hardavellas, Anastasia Ailamaki, and
Babak Falsafi. 2009. Shore-MT: A Scalable Storage Manager for the Multicore
Era. In Proceedings of the 12th International Conference on Extending Database
Technology: Advances in Database Technology (Saint Petersburg, Russia) (EDBT
’09). Association for Computing Machinery, New York, NY, USA, 24–35. https:
//doi.org/10.1145/1516360.1516365

[8] Chinmay Kulkarni, Badrish Chandramouli, and Ryan Stutsman. 2021. Achieving
High Throughput and Elasticity in a Larger-than-Memory Store. Proc. VLDB
Endow. 14, 8 (apr 2021), 1427–1440. https://doi.org/10.14778/3457390.3457406

[9] H. T. Kung and Philip L. Lehman. 1980. Concurrent Manipulation of Binary
Search Trees. ACM Trans. Database Syst. 5, 3 (sep 1980), 354–382. https://doi.
org/10.1145/320613.320619

[10] Justin J. Levandoski, David B. Lomet, and Sudipta Sengupta. 2013. The Bw-Tree: A
B-Tree for New Hardware Platforms. In Proceedings of the 2013 IEEE International
Conference on Data Engineering (ICDE 2013) (ICDE ’13). IEEE Computer Society,
USA, 302–313. https://doi.org/10.1109/ICDE.2013.6544834

[11] Tianyu Li, Matthew Butrovich, Amadou Ngom, Wan Shen Lim, Wes McKinney,
and Andrew Pavlo. 2020. Mainlining Databases: Supporting Fast Transactional
Workloads on Universal Columnar Data File Formats. Proc. VLDB Endow. 14, 4
(dec 2020), 534–546. https://doi.org/10.14778/3436905.3436913

[12] Tianyu Li, Badrish Chandramouli, Jose M. Faleiro, Samuel Madden, and Donald
Kossmann. 2021. Asynchronous Prefix Recoverability for Fast Distributed Stores.
Association for Computing Machinery, New York, NY, USA, 1090–1102. https:
//doi.org/10.1145/3448016.3458454

[13] Yi Lu, Xiangyao Yu, Lei Cao, and Samuel Madden. 2021. Epoch-Based Commit
and Replication in Distributed OLTP Databases. Proc. VLDB Endow. 14, 5 (jan
2021), 743–756. https://doi.org/10.14778/3446095.3446098

[14] Yandong Mao, Eddie Kohler, and Robert Tappan Morris. 2012. Cache Craftiness
for Fast Multicore Key-Value Storage. In Proceedings of the 7th ACM European
Conference on Computer Systems (Bern, Switzerland) (EuroSys ’12). Association
for Computing Machinery, New York, NY, USA, 183–196. https://doi.org/10.
1145/2168836.2168855

[15] Guna Prasaad, Badrish Chandramouli, and Donald Kossmann. 2019. Concurrent
Prefix Recovery: Performing CPR on a Database. In Proceedings of the 2019 Inter-
national Conference on Management of Data (Amsterdam, Netherlands) (SIGMOD
’19). ACM, New York, NY, USA, 687–704. https://doi.org/10.1145/3299869.3300090

[16] Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip
Shao, and Daniel J. Abadi. 2012. Calvin: Fast Distributed Transactions for
Partitioned Database Systems. In Proceedings of the 2012 ACM SIGMOD Inter-
national Conference on Management of Data (Scottsdale, Arizona, USA) (SIG-
MOD ’12). Association for Computing Machinery, New York, NY, USA, 1–12.
https://doi.org/10.1145/2213836.2213838

[17] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.
2013. Speedy transactions in multicore in-memory databases. In SOSP.

[18] ZiqiWang, Andrew Pavlo, Hyeontaek Lim, Viktor Leis, Huanchen Zhang,Michael
Kaminsky, and David G. Andersen. 2018. Building a Bw-Tree Takes More Than
Just Buzz Words. In Proceedings of the 2018 International Conference on Manage-
ment of Data (Houston, TX, USA) (SIGMOD ’18). Association for Computing Ma-
chinery, New York, NY, USA, 473–488. https://doi.org/10.1145/3183713.3196895

[19] Ling Zhang, Matthew Butrovich, Tianyu Li, Yash Nannapanei, Andrew Pavlo,
John Rollinson, Huanchen Zhang, Ambarish Balakumar, Daniel Biales, Ziqi Dong,
Emmanuel Eppinger, Jordi Gonzàlez, Wan Shen Lim, Jianqiao Liu, Prashanth
Menon, S.S. Mukherjee, Tanuj Nayak, Amadou Ngom, Jeff Niu, D. Patra, P. Govind
Raj, Stephanie Wang, Wuwen Wang, Yao-Tin Yu, and William Zhang. 2021.
Everything is a Transaction: Unifying Logical Concurrency Control and Physical
Data Structure Maintenance in Database Management Systems. In CIDR.

https://www.intel.com/content/www/us/en/develop/documentation/onetbb-do
https://www.intel.com/content/www/us/en/develop/documentation/onetbb-do
https://aka.ms/epvs
https://github.com/microsoft/FASTER
http://doi.acm.org/10.1145/3183713.3196898
http://doi.acm.org/10.1145/3183713.3196898
https://doi.org/10.1145/1376616.1376713
https://doi.org/10.1145/1516360.1516365
https://doi.org/10.1145/1516360.1516365
https://doi.org/10.14778/3457390.3457406
https://doi.org/10.1145/320613.320619
https://doi.org/10.1145/320613.320619
https://doi.org/10.1109/ICDE.2013.6544834
https://doi.org/10.14778/3436905.3436913
https://doi.org/10.1145/3448016.3458454
https://doi.org/10.1145/3448016.3458454
https://doi.org/10.14778/3446095.3446098
https://doi.org/10.1145/2168836.2168855
https://doi.org/10.1145/2168836.2168855
https://doi.org/10.1145/3299869.3300090
https://doi.org/10.1145/2213836.2213838
https://doi.org/10.1145/3183713.3196895

A CODE SAMPLES
In this appendix, we showcase the C# EPVS API and several exam-
ple programs written with EPVS. These are meant to be simplistic
representations of EPVS and the depicted applications for illustra-
tion purposes, rather than runnable code. Complete examples are
available as part of the FASTER repository [3].

A.1 EPVS

1 struct State
2 {
3 long GetVersion () {...}
4 byte GetPhase () {...}
5 ...
6 }

8 interface StateMachine
9 {
10 // Given the current statem compute the next state
11 // this version scheme should enter , or false if no
12 // such transition is available yet
13 bool GetNextStep (State current , out State next);

15 // Logic to execute before entering a state .
16 // Guaranteed to execute under mutual exclusion with
17 // other transition logic or EPVS - protected regions
18 void OnEnteringState (State from , State next)

20 ...
21 }

23 class EpochProtectedVersionScheme
24 {
25 // Enter protected region under the returned state
26 State Enter () {...}

28 // Equivalent to leaving and entering , but likely
29 // cheaper
30 State Refresh () {...}

32 // Leave previouslyprotected region
33 void Leave () {...}

35 // Attempt to start executing the given state machine .
36 // May spin if a state machine is underway . Returns
37 // false if state machine has ToVersion () that is
38 // smaller than current version . Blocks until state
39 // is back to REST if block is set to true.
40 bool ExecuteStateMachine (StateMachine sm ,
41 bool block) {...}

43 ...
44 }

46 // A simple state machine that transitions from REST
47 // to REST with the given critical section
48 class SimpleStateMachine : StateMachine {
49 Action criticalSection ;

51 SimpleStateMachine (Action a) {...}

54 override bool GetNextStep (StateMachine current ,
55 out StateMachine next) {
56 Debug . Assert (current . Phase == REST);
57 next = new State (REST , current . Version + 1);
58 return true;
59 }

61 override void OnEnteringState (State from ,
62 State to) {
63 Debug . Assert (from. Phase == REST
64 && to. Phase == REST);
65 criticalSection ();
66 }
67 }

Figure 8: Summary of EPVS API

A.2 Ownership Transfer Protection

2 class KeyValueStore {
3 // Handle some request for key k
4 Response Process (Key k, Request r) {...}

6 ...
7 }

9 class KeyValidator {
10 // Not safe to invoke concurrently with ownership
11 // updates
12 bool OwnsKey (Key k);

14 void UpdateOwnership (...);
15 }

17 class KeyValueServer {
18 ...
19 KeyValueStore kv;
20 KeyValidator validator ;
21 EpochProtectedVersionScheme epvs;
22 ...

24 // for normal key - value operations
25 void HandleNormalRequest (Key k, Request r) {
26 Response response ;
27 epvs. Enter ();
28 try {
29 if (! validator . OwnsKey (k))
30 // error handling
31 ...
32 response = kv. Process (k, r);
33 } finally {
34 epvs. Leave ();
35 }
36 // Send response
37 ...
38 }

40 // For ownership transfers
41 void HandleTransferRequest (...) {
42 epvs. ExecuteStateMachine (new SimpleStateMachine (
43 () => validator . UpdateOwnership (...)) , true);
44 }

46 }

Figure 9: Example implementation of safe ownership trans-
fer using EPVS

A.3 Resizable Array

1 class ResizableArray <T> {
2 EpochProtectedVersionScheme epvs;
3 T[] list;
4 int count ;

6 ...

8 T Read(int index) {
9 epvs. Enter ();
10 try {
11 // bounds check need to include list. length
12 // because push may increment count beyond
13 // current list size
14 if (index >= 0 && index < count
15 && index < list. Length)
16 return list[index];
17 // Exception handling for out -of - bounds requests
18 ...
19 } finally {
20 epvs. Leave ();
21 }
22 }

24 int Push(T value) {
25 // Atomically obtain position to push to
26 var pos = Interlocked . Increment (ref count) - 1;
27 epvs. Enter ();
28 try {
29 // Need to perform resize check in a loop because
30 // more than one resize may be required to reach pos
31 while (true) {
32 // Normal push into array tail
33 if (result < list. Length) {
34 list[result] = value ;
35 return result ;
36 }
37 // Issue resize from the first entry to run
38 // out of space to avoid duplicate calls
39 if (result == list. Length)
40 epvs. ExecuteStateMachine (
41 new SimpleStateMachine (
42 () => /* Resize */ ...));
43 // refresh continuously if blocked to ensure progress
44 epvs. Refresh ();
45 }
46 } finally {
47 epvs. Leave ();
48 }
49 }
50 ...
51 }

Figure 10:Resizable Array Implementation Using EPVS with
a Simple One-Phase State Machine

1 class ListGrowthStateMachine <T> : StateMachine
2 {
3 const byte COPYING = 1;
4 ResizableArray <T> obj;
5 bool copyDone = false ;

7 ListGrowthStateMachine (ResizableArray <T> obj) {...}

10 override bool GetNextStep (StateMachine current ,
11 out StateMachine next)
12 {
13 switch (current . Phase)
14 {
15 case REST:
16 next = new State (COPYING , current . Version);
17 return true;
18 case COPYING :
19 next = new State (REST , current . Version + 1);
20 return copyDone ;
21 }
22 }

24 override void OnEnteringState (State from , State to)
25 {
26 switch (from. Phase)
27 {
28 case REST:
29 obj. newList = new T[obj.list. Length * 2];
30 // Copy in background
31 Task.Run (() => {
32 Array .Copy(obj.list , obj.newList ,
33 obj.list. Length);
34 copyDone = true;
35 });
36 break ;
37 case COPYING :
38 obj.list = obj. newList ;
39 break ;
40 }
41 }
42 }

Figure 11: Two-Phase State Machine for Resizable Array as
Depicted in Section 3

1 class ResizableArray <T>
2 {
3 EpochProtectedVersionScheme epvs;
4 T[] list , newList ;
5 int count ;
6 ...
7 public T Read(int index) {
8 var state = epvs. Enter ();
9 try {
10 if (index < 0 || index >= count)
11 // Error handling
12 ...
13 if (index < list. Length)
14 return list[index];
15 // If in COPYING phase , entry may have been
16 // pushed onto the new list
17 if (state . Phase == COPYING
18 && index < newList . Length)
19 return newList [index];
20 // Error handling
21 ...
22 } finally {
23 epvs. Leave ();
24 }
25 }

27 public int Push(T value) {
28 var pos = Interlocked . Increment (ref count) - 1;
29 var state = epvs. Enter ();
30 try {
31 while (true) {
32 if (state . Phase == REST
33 && pos == list. Length) {
34 epvs. ExecuteStateMachine (
35 new ListGrowthStateMachine (this));
36 state = epvs. Refresh ();
37 }
38 // Wait until the list to push to can accommodate
39 // pos of this element
40 var listTarget = state . Phase == REST
41 ? list
42 : newList ;
43 if (pos >= listTarget . Length) {
44 state = epvs. Refresh ();
45 continue ;
46 }
47 // if copying , need to copy to old list first to
48 // prevent copying from erasing the write .
49 if (state . Phase = COPYING
50 && pos < list. Length)
51 list[pos] = value ;
52 listTarget [pos] = value ;
53 }
54 } finally {
55 epvs. Leave ();
56 }
57 }
58 ...
59 }

Figure 12:Resizable Array Implementation Using EPVS with
Two-Phase State Machine

A.4 FASTER Checkpointing State Machine

1 class FasterEpvsStateMachine : StateMachine {
2 FasterKV faster ;
3 ...

5 override bool GetNextStep (State curr , State next) {
6 switch (curr. Phase) {
7 case REST:
8 next = new State (LOG_FLUSH , curr. Version)
9 return true;
10 case LOG_FLUSH :
11 next = new State (REST ,curr. Version + 1);
12 // Return based on whether the flush is complete
13 return ...;
14 }
15 }

17 override void OnEnteringState (State from ,
18 State to) {
19 switch (curr. Phase) {
20 case REST:
21 // Initialize and start checkpoint by capturing
22 // a snapshot of FASTER -KV hybrid log in the form
23 // of an offset
24 ...
25 break ;
26 case LOG_FLUSH :
27 // Complete checkpoint by resetting local data
28 // structures and persisting metadata
29 ...
30 break ;
31 }
32 }
33 }

35 class FasterKV {
36 EpochProtectedVersionScheme epvs;
37 ...
38 Status Read (...) {
39 var state = epvs. Enter ();
40 // original FASTER logic to read
41 ...
42 epvs. Leave ();
43 }
44 ...
45 bool TakeHybridLogCheckpoint (...) {
46 return epvs. ExecuteStateMachine (
47 new FasterEpvsStateMachine (this));
48 }
49 }

Figure 13: Refactored FASTER checkpoint logic with EPVS.
The original logic is omitted due to space limitations.

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Epoch-Protected Version Schemes
	3.1 Version Schemes
	3.2 Transition State Machines
	3.3 Putting it Together: The EPVS API

	4 Examples
	5 Implementation
	6 Evaluation
	6.1 End-to-End Experiments
	6.2 Microbenchmarks

	7 Conclusion
	Acknowledgments
	References
	A Code Samples
	A.1 EPVS
	A.2 Ownership Transfer Protection
	A.3 Resizable Array
	A.4 FASTER Checkpointing State Machine

