
CRA: Enabling Data-Intensive Applications in
Containerized Environments

Ibrahim Sabek∗
University of Minnesota

Minneapolis, USA
sabek@cs.umn.edu

Badrish Chandramouli
Microsoft Research

Redmond, USA
badrishc@microsoft.com

Umar Farooq Minhas
Microsoft Research

Redmond, USA
ufminhas@microsoft.com

Abstract—Today, a modern data center hosts a wide variety
of applications comprising batch, interactive, machine learning,
and streaming applications. In this paper, we factor out the
commonalities in a large majority of these applications, into
a generic dataflow layer called Common Runtime for Applica-
tions (CRA). In parallel, another trend, with containerization
technologies (e.g., Docker), has taken a serious hold on cloud-
scale data centers, with direct implications on building next
generation of data center applications. Container orchestrators
(e.g., Kubernetes) have made deployment a lot easy, and they
solve many infrastructure level problems, e.g., service discovery,
auto-restart, and replication. For best in class performance,
there is a need to marry the next generation applications with
containerization technologies. To that end, CRA leverages and
builds upon the containerization and resource orchestration
capabilities of Kubernetes/Docker, and makes it easy to build
a wide range of cloud-edge applications on top. To the best of
our knowledge, we are the first to present a cloud native runtime
for building data center applications. We show the efficiency of
CRA through various micro-benchmarking experiments.

I. INTRODUCTION

With the data explosion in businesses today, there is a need
to deploy rich dataflows over the data. A dataflow consists
of a graph of computation vertices that each holds state and
reads/writes data to other vertices. In this paper, we start with
the premise that such distributed stateful dataflows are a very
general primitive, and encompass a wide range of applications
deployed today. For example, a scan-based analytics system
reads data from storage or in-memory caches (input vertices)
and runs an analytics query using a dataflow of relational
operator vertices. A streaming pipeline directly maps to an
acyclic dataflow, whereas machine learning computations map
to dataflows with iterative cycles in the dataflow graph. These
systems consist of a dataflow of compute instances (actors)
that communicate with one another using remote procedure
calls that directly map to a dataflow abstraction.

Given the importance of (distributed) dataflows across di-
verse application domains, there is a strong need to make it
easy for application developers to author dataflows that are
distributed, efficient, scalable, resilient, and potentially long-
running. Several frameworks and software layers have been
proposed by the data processing and systems communities,
in order to help create and deploy such applications. At
the lowest level of the stack, we have raw virtual machines

∗Work started during internship at Microsoft Research.

(e.g., in Infrastructure-as-a-Service cloud offerings) which are
hard to deploy, manage, and program in a distributed setting.
Most applications instead use a layer above the machine: data
intensive applications such as map-reduce have historically
used YARN [2] as a resource manager, whereas micro-services
are deployed on Kubernetes [7] and Docker [6]. There is
increasing interest in running data-intensive applications on
Kubernetes (often abbreviated as k8s) and Docker as well.

Unfortunately, both YARN and Kubernetes offer bare-bones
compute abstractions with no support for customized dataflows
that are: (a) easy to deploy, (b) usable for offline and real-
time dataflows or a mix of both, and (c) resilient to failures.
Another option is to use specific dataflow systems such as
Storm [5] to implement other applications. However, these
systems make too many assumptions and choices that limit
their general applicability across a broad range of applications.
For example, they prescribe a particular data format, query
model, and resiliency strategy (such as none, checkpoint-
replay, or active-active). Thus, these solutions are not usable
across the broad range of applications identified above. In
addition, these solutions are not optimized for containerized
environments that are becoming ubiquitous today.

As a result, today, there is severe fragmentation in the
application ecosystem, where each system has created its own
abstractions and implementations of its own building blocks to
achieve its dataflow requirements at high performance. Exam-
ples include Storm [5], Spark [4], and Flink [1], which share
no code commonalities today (apart from the lowest layer
of YARN or Kubernetes). This fragmentation has resulted
in repeated “re-invention of the wheel” with redundant re-
implementation of significant parts of the stack that could have
been shared. Further, this made it very hard to run such diverse
applications in a shared environment.

We propose a new runtime layer called Common Runtime
for Applications (CRA)1. CRA provides a generic distributed
dataflow abstraction and deployment functionality without
making choices that applications would like to control. At the
same time, CRA offers significant functionality that makes
it easier to build such applications. For example, CRA does
not interfere with the data plane of the distributed dataflow,

1CRA is available as open-source software, and can be downloaded at
https://github.com/Microsoft/CRA.



exposing raw network streams between (virtual) endpoints,
instead of a specific data format or protocol. This allows
applications to choose their own data format and application
protocol between dataflow vertices. CRA exposes the capa-
bility of running multiple copies of a vertex and switching
over between them on failure, allowing applications to build
dataflow graphs with active-active or active-standby resiliency
models (in addition to the usual checkpoint-replay capability).
CRA supports sharding primitives and rich communication
patterns that enable complex and potentially long-running
dataflows to be constructed, deployed, and maintained.

CRA exploits the recent advances in containerization to ef-
ficiently execute the physical deployments of dataflow graphs.
The dataflow vertices are packaged into Docker containers,
and we use a container orchestration framework such as
Kubernetes [7] to deploy them. CRA leverages the features
of the orchestrator (e.g., code deployment and worker instan-
tiation, liveness and heartbeats for resiliency) and provides the
additional functionality to make it possible to build resilient
long-running dataflows with customized resiliency strategies,
data delivery semantics, and scale out schemes.

With CRA, we were able to simplify the implementation
of several dataflow-based systems such as (1) Quill [9],
a distributed data-intensive temporal analytics engine; and
(2) Ambrosia [11], a distributed programming framework
based on reliable message delivery. In this paper, we focus
only on the basic design and features of CRA. We also evaluate
CRA using various micro-benchmarks. More details on CRA,
its data processing layer, its applications, and a more complete
evaluation can be found in our technical report [10].

II. CRA SYSTEM OVERVIEW

A. Basic CRA Concepts and Design

1) Defining Vertices: At the simplest conceptual layer of
CRA, we allow users to express their computation as a logical
graph of computation units called vertices. Each vertex may
be associated with named input and output endpoints, which
are used to connect pairs of vertex instances. Input and output
endpoints have to implement FromStream and ToStream
functions, in order to receive and send data, respectively. Note
that CRA provides a Stream abstraction to transfer bytes
from one vertex to another. This enables applications to define
their own data formats (e.g., columnar serialization) and send
them another vertex without incurring the cost of extra mem-
ory copies. Further, endpoints can optionally enable the ability
to communicate with other endpoints using shared memory, by
implementing FromOutput and ToInput functions. These
functions take objects as parameters, and allow a vertex to
access the memory of objects belonging to the other vertex
without incurring a copy. CRA is responsible for choosing this
mode of transfer if source and destination vertices support it
and if they are located on the same CRA worker.

2) Logical Graph Creation and Deployment: Given a set
of vertex definitions as described above, one can programmat-
ically register these definitions with CRA, instantiate vertices
on a set of named CRA worker instances, and connect the

vertices using connections (or edges), to/from the logical
graph. The user programmatically interacts with the CRA
client library to perform these operations.

3) Physical Deployment: CRA workers can be spawned off
as processes from the OS shell. Alternatively, such workers
can be packaged into Docker containers and deployed on
a set of physical (or virtual) machines using a resource
orchestrator such as Kubernetes. The orchestrator ensures that
CRA worker instances are started (and re-started) as necessary
on the cluster. These CRA workers use the metadata and
take responsibility for maintaining the physical instantiation
of the user-defined dataflow graphs in the presence of ongoing
machine and connection failures.

B. Sharded Vertices & Endpoints

Building upon the concept of a graph of vertices, we
provide a layer that exposes sharded equivalents of vertices
and endpoints to users. A sharded vertex represents a certain
number of copies (called shards) of a vertex instantiated in the
data center, but referenced as a single entity. For clarity, we
will refer to the normal vertices from Section II-A as simple
vertices. Analogous to our endpoints from earlier (we will
call them simple endpoints), we define the notion of sharded
endpoints. A sharded input (or output) endpoint implements
the sharded equivalent of FromStream (or ToStream), that
takes an array of Stream objects as argument. Interestingly,
sharded input and output endpoints may exist in both simple
and sharded vertices. Sharded endpoints simply add the capa-
bility of receiving from (or sending to) a sharded source (or
destination) vertex, respectively.

C. System Architecture

Figure 1 depicts the overall architecture of CRA. We have
designed CRA as an embedded client library that is linked to
code for three distinct entities:
• Vertices and Endpoints: The user code for vertices and

endpoints are given a reference to the client library, which
they can use to create or delete connections, instantiate
new vertices, etc.

• Deployers: Code that is used to create vertices and con-
nections, and instantiate them on specific worker instances
(identified by names) may be written by deployment code,
that lives outside vertices and endpoints.

• Worker Bootstrap: The worker instances themselves are
written as a simple bootstrap program that uses the CRA
client library to create a worker instance and start it in the
current process. We offer the CRA worker as a Docker
container that can be deployed on a cluster using resource
orchestrators such as Kubernetes, that handle deployment
(and re-deployment) and failure detection.

D. Metadata Management

CRA stores metadata in a key-value store. This is a plug-
gable module. Our implementation for Microsoft Azure uses
Azure Table Storage to store such data. CRA stores a variety
of metadata:



…

…

…

…

Fig. 1. CRA Overall Architecture

• List of logical vertex definitions, along with a pointer to
files on storage that contain the binary related to the vertex.

• List of worker instances that have been defined. For
workers that are active, additional information such as the
IP endpoint and port are stored as part of the metadata.

• List of vertex instances associated with specific workers.
A vertex may be instantiated on more than one worker –
in this case, at most one instance may be designated as
“active”. Each instance is also associated with parameters
that are associated with instantiating that specific instance.

• The list of logical connections between vertex endpoints,
which represents the edges in the CRA dataflow graph.

• For sharded vertices, the sharded vertex names and list of
instances associated with the shard.

E. Worker Lifecycle

Recall that the user registers a set of CRA worker instances,
with a unique name for each worker. When a worker (with a
unique name) is started by the resource orchestrator on some
physical machine, it exposes a listening server on a registered
port (whose information is present in the metadata entry for
that worker instance). This allows remote workers and clients
to establish connections and issue various requests such as
connecting to an endpoint, notifying of a newly added vertex
to the worker, and vertex removal.

When a worker is created, it first queries the metadata
tables to identify what vertices need to be instantiated on that
worker instance. For each vertex instance, CRA downloads the
application code from the appropriate location in storage and
dynamically instantiates the vertex object. It then downloads
the vertex parameter and calls a special method Initialize
on the vertex object, passing it the parameters registered during
logical vertex instantiation and stored as part of the instance
metadata, as described in the section on metadata management.
Then, for each connection originating or ending at this vertex,
CRA establishes the TCP connection from this endpoint to its
matching remote endpoint. When a connection between two
endpoints is established, CRA calls the FromStream and
ToStream calls on the corresponding endpoints in order to
invoke user code after a successful connection. This process
is repeated for all connections to/from the instance.

F. Handling Failures

CRA handles both connection and node failures for the
application. When a CRA worker fails, it depends on the

resource orchestrator (such as Kubernetes) to detect this and
reinstate the container elsewhere on the cluster. On worker re-
creation, CRA goes through the process described above to
reinstate the vertices and connections on that worker.

Other workers may be hosting vertices that are reading and
writing to the failed vertex. When their network streams break,
the endpoint code receives an exception that it can handle
appropriately, and transfer up to CRA (which instantiated the
ToStream or FromStream) code that was interacting with
the network stream. The CRA worker then re-establishes the
connection and returns control back to user code. It is possible
that both sides of a connection try to establish the connection
at the same point. CRA ensures that only one connection
succeeds using backoff and retry logic on both sides. The
protocol also supports the notion of requesting a connection
with a parameter killRemote. When this is set to true,
the CRA worker on the other side uses a “task cancellation”
token to force the endpoint to kill its execution, and replaces
the connection with the new incoming one. This feature is
necessary because one side of the connection may be unaware
that the connection is in a failed state, e.g., because the user
logic on the other side is not even trying to use the stream at
that point in time (e.g., waiting on a different stream or file).

G. Handling Vertex Replicas

As mentioned earlier, CRA supports multiple replicas of the
same vertex running on different worker instances. Only one
vertex is designated as “active” at a given point. A vertex
becomes active when it leaves the Initialize method.
Thus, replicas typically stay in Initialize until they are ready to
take over computation, at which point they exit Initialize
and take over control. When vertex becomes active, existing
connections that are broken (because the older active is no
longer available) look up the current active destination in
the metadata, find the newly activated replica, and establish
connection to it. In parallel, the newly activated replica also
proactively tries to create its outgoing and incoming connec-
tions, so that the distributed vertex graph is restored to the
logically correct global state.

III. EXPERIMENTAL EVALUATION

In this section, we evaluate CRA’s performance using micro-
benchmarks. In all experiments, we use a sharded broadcast
scenario as an example. For a given number of vertices, we
construct a fully connected mesh, i.e., each vertex is connected
to every other vertex. Each vertex sends (receives) a fixed
amount – 100MB – of data to (from) every other vertex.
We use sharded broadcast as an example of the basic “data
exchange” operator used in many analytical queries. Our target
metric is measured throughput in Gigabits per second (Gbps).
Unless otherwise noted, we run all experiments on two Azure
VMs. Similarly, for K8s, we use an Azure Kubernetes Service
(AKS) cluster with two agent nodes.

1) Overhead of Containerization: In the first experiment,
we measure the overhead of containerization vs. VMs. We vary
the number of CRA workers (or instances) in each VM/Pod



 5
 10
 15
 20
 25
 30
 35
 40
 45
 50

2 4 6 8

T
h

ro
u

g
h

p
u

t 
(G

b
p

s
)

No. of CRA Workers

CRA-on-VM
CRA-on-K8S

(a) Containerization Overhead

 10

 20

 30

 40

 50

 60

 70

 80

1 2 4

T
h

ro
u

g
h

p
u

t 
(G

b
p

s
)

No. of CRA Workers/Pod

2 CRA Workers
4 CRA Workers
6 CRA Workers
8 CRA Workers

(b) Effect of Packing Workers

 20

 40

 60

 80

 100

 120

1 Pod N Pods

T
h

ro
u

g
h

p
u

t 
(G

b
p

s
)

Setup of N CRA Workers

2 CRA Workers
4 CRA Workers
8 CRA Workers

(c) Effect of Shared Memory

 5

 10

 15

 20

 25

 30

0 1 2 4 8

T
h

ro
u

g
h

p
u

t 
(G

b
p

s
)

No. of Failed CRA Workers

(d) Overhead of Failures

Fig. 2. Micro-benchmark Evaluation of CRA

and measure the throughput. Figure 2(a) shows the results of
this experiment. Overall, throughput with VMs is between 1.4x
to 3.6x higher as compared to K8s.

2) Packing CRA Workers on K8s Pods: In this experiment,
we vary the number of workers packed in a K8s Pod and
measure the impact on throughput. We show the results in
Figure 2(b), where x-axis is the number of CRA workers
per Pod, while the different colored bars represent the total
number of CRA workers. We can see that as we pack more
CRA workers in a Pod, we get higher throughput. This means
that for network intensive applications, it is desirable to more
tightly pack CRA workers into Pods.

3) Effect of CRA’s Shared Memory Optimization: In this
next experiment, we want to directly measure the impact
of CRA’s shared memory communication on throughput. We
show the results in Figure 2(c). We explore two packing
strategies (1) fully-packed: pack all CRA workers into a single
pod, labeled as “1 Pod” (2) fully unpacked: one Pod per CRA
worker, labeled as “N Pods”. We run with 2, 4, and 8 CRA
workers in total (represented as different bars). These results
show that CRA’s shared memory communication can improve
throughput by up to 5x as compared to regular TCP sockets,
showing the effectiveness of this optimization.

4) Effect of Failures on CRA: In this experiment, we study
the impact of failures, which are quite common in practice, on
CRA’s performance. We fix the number of CRA workers to 8,
running in two Pods (4 workers per Pod). We then randomly
fail some of them. We show the results in Figure 2(d), with
0, 1, 2, 4, and 8 failed CRA workers. We see that CRA’s
performance gracefully degrades with the number of failures.
This experiment shows that CRA effectively builds on top of
the automatic detect and restart capability of K8s to provide
fault tolerance for applications built on top of CRA.

IV. RELATED WORK

Simiar to CRA, Hyracks [8], Dryad [12], and Nephele [14],
adopt the notion of representing data processing as vertices and
edges in a DAG. However, unlike CRA, these systems provide

data processing engines of their own, and hence the other
aspects of building and deploying applications (e.g., sharding,
recoverability, elastic scaling) are built into the engine. This
tight coupling makes these systems less flexible.

Apache Tez [13] and Apache REEF [3] facilitate building
custom dataflow applications. To that end, these systems have
similar goals as CRA. However, they are tied to the YARN
ecosystem and have been exclusively developed to avoid “re-
inventing the wheel” in the YARN community. In contrast,
CRA is much more general purpose and can be widely
used inside and outside of the YARN ecosystem. Further,
CRA exposes raw network streams to applications and gives
users full control over the data plane. CRA also exposes a
capability to run highly resilient long-running workflows with
support for different application-defined resiliency strategies
such as active-active, and checkpoint-replay, as well as first-
class support for making it easy to write applications with
sharding and dynamic topologies.

V. CONCLUSIONS

In this paper, we presented the design and implementation
of Common Runtime for Applications (CRA), a cloud-native
runtime with a common interface to build a wide variety
of data center applications. We showed how system and
application designers can exploit next-generation virtualization
technologies such as containers, which have become the de-
facto building blocks for packaging and deploying cloud-scale
applications. The CRA architecture enables data-centric appli-
cations to be first-class citizens on these emerging platforms.
Finally, we welcome the community to contribute to and build
on CRA, which is now available as open-source software.

Acknowledgments. We thank Mike Barnett, Gautam Bhakar,
Darren Gehring, Jonathan Goldstein, Niel Lebeck, and
Christopher Meiklejohn for their help and contributions.

REFERENCES

[1] Apache Flink. https://flink.apache.org/, 2018.
[2] Apache Hadoop YARN. https://hadoop.apache.org/docs/current/

hadoop-yarn/hadoop-yarn-site/YARN.html, 2018.
[3] Apache REEF. http://reef.apache.org/, 2018.
[4] Apache Spark. https://spark.apache.org/, 2018.
[5] Apache Storm. http://storm.apache.org/, 2018.
[6] Docker. https://www.docker.com/, 2018.
[7] Kubernetes. https://kubernetes.io/, 2018.
[8] V. Borkar, M. Carey, R. Grover, N. Onose, and R. Vernica. Hyracks:

A flexible and extensible foundation for data-intensive computing. In
ICDE, 2011.

[9] B. Chandramouli, R. C. Fernandez, J. Goldstein, A. Eldawy, and
A. Quamar. Quill: Efficient, transferable, and rich analytics at scale.
VLDB Endow., 2016.

[10] B. Chandramouli, U. F. Minhas, and I. Sabek. CRA: A Common
Runtime for Applications. Technical report, MSR-TR-2019-2, 2019.
https://aka.ms/cra-tr.

[11] J. Goldstein et al. Ambrosia: Providing Performant Virtual Resiliency for
Distributed Applications. Technical report, 2018. https://aka.ms/amb-tr.

[12] M. Isard et al. Dryad: Distributed data-parallel programs from sequential
building blocks. In EuroSys, 2007.

[13] B. Saha, H. Shah, S. Seth, G. Vijayaraghavan, A. Murthy, and C. Curino.
Apache tez: A unifying framework for modeling and building data
processing applications. In SIGMOD, 2015.

[14] D. Warneke and O. Kao. Nephele: Efficient parallel data processing in
the cloud. In MTAGS, 2009.


